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Abstract

3D Gaussian splatting has recently gained immense popularity due to its high parallelizability and efficiency,
allowing 3D scenes to be rendered faster than neural radiance field-based methods while maintaining compa-
rable quality. However, representing a scene with 3D Gaussian splatting requires a large number of Gaussian
primitives, from hundreds of thousands to several millions, resulting in high storage complexity. To address
this issue, we investigate the use of learned entropy models from the image compression literature and resid-
ual coding for Gaussian attribute compression. We also explore enhancements to the 3D Gaussian splatting
algorithm using a Markov Chain Monte Carlo framework and investigate methods to reduce the number
of Gaussian primitives through learned primitive masking and importance-based pruning. Our experiments
show that optimizing Gaussian primitives with the Markov Chain Monte Carlo framework significantly im-
proves the visual quality of novel view synthesis. Additionally, learned primitive masking and importance-
based pruning can reduce the number of Gaussian primitives by up to half without notable quality loss. We
demonstrate that learned entropy modeling, combined with a hyperprior network, can integrate seamlessly
into optimized Gaussian primitives, reducing their size by up to 10 times without degrading visual quality.
As the integration does not require any modification in Gaussian primitives, it is an easy method to adopt.
Further investigation of hierarchy generation and residual coding reveals that hierarchy structure with octree
representation and weighted averaging does not allow for higher compression efficiency, indicating a more
complex Gaussian attribute prediction scheme might be required to increase storage efficiency. These find-
ings highlight the potential for further storage improvements in 3D Gaussian splatting while maintaining
high visual quality, paving the way for scalable rendering techniques. The details of the implementation can
be accessed in https://github.com/erenovic/GSCompression.

https://github.com/erenovic/GSCompression
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Chapter 1

Introduction

In recent years, novel view synthesis (NVS) has gained significant momentum, starting with the high success
achieved by Neural Radiance Field (NeRF) based methods. Seminal work NeRF [24] has been influential
in the domain by suggesting use of neural networks for mapping from the 3D positions to view synthesizing
attributes like opacity and color. The high representative capability of neural networks allows for fitting to
a scene and capturing high amount of scene details by overfitting network parameters for the scene. How-
ever, a setback with NeRF-based NVS methods is the computational cost due to inefficiency born from
ray-tracing method, requiring point sampling at unimportant 3D positions [37]. As a result, they suffer from
slow training and inference-time rendering.
In contrast, 3D Gaussian Splatting (3D-GS) [15] has emerged as a revolutionary approach due to its high
efficiency, short training time and real-time rendering capability. The algorithm is based on “splatting” to
project 3D Gaussian primitives onto a 2D image plane for efficient rasterization. This process is highly suit-
able for parallelization as 3D Gaussians are defined in a limited spatial extent and they are independent from
each other [15]. Although the Gaussian splatting method has been around since 1991 [36], the proposal of
a differentiable adaptation in 3D-GS [15] has allowed for an efficient optimization algorithm with gradient
descent. In contrast to NeRF-based methods, 3D-GS does not require neural networks and is purely based
on optimization of 3D Gaussians for further rasterization. As a result, it has an easily scalable and highly
representative nature using millions of Gaussian primitives.
Although 3D-GS has been utilized in many domains from scene editing to SLAM applications in a short
amount of time, it brings an important obstacle in terms of storage. This obstacle is not existent with
NeRF-based NVS methods due to high representative capability of neural networks. As the 3D scenes are
represented using millions 3D Gaussian primitives that are composed of geometry and appearance attributes,
the storage requirement of a 3D scene grows linear in number of Gaussian primitives. A naive storage of
Gaussian primitives with 32-bit representation per attribute results in scene representations requiring hun-
dreds of MB to a few GB storage capacity [11]. This storage drawback is a limiting factor for applications
such as autonomous driving, and AR/VR applications due to low storage capacity of edge devices [20].

1.1 Focus of this Work

This work focuses on reducing the storage requirements of 3D-GS to enable more compact scene represen-
tations without compromising real-time rendering capabilities. This result can be primarily achieved by 3
main strategies: (1) Reducing the number of 3D Gaussian primitives, (2) Reducing the precision required
to represent a scene, (3) Achieving a better entropy modeling to reduce bitrate requirement to store and
transmit Gaussians.
The primary focus of this work mainly lies in (1) pruning Gaussian primitives and (3) better performing
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entropy modeling, while (2) is utilized only briefly for compressing position information of 3D Gaussian
primitives. Using the extensive literature on learned image compression, this thesis focuses on alleviating
the high storage complexity of 3D-GS. In addition, methods for controlling (pruning) the number of Gaus-
sian primitives are compared and utilized for a further reduction in the storage requirements. As potential
future direction and important step to reduce the entropy by making use of scene structure, a hierarchical
scene structure for residual coding idea from video compression is further explored.

1.2 Thesis Organization

For the rest of this semester thesis, the following organization is adopted to provide a concise and fluent
analysis:

• Section 2 provides a brief overview of related works that are essential for improving the visual quality
of novel view synthesis and reducing the memory requirements of the Gaussian splatting representa-
tion. It introduces advancements in the seminal 3D-GS algorithm, Gaussian hierarchical structuring
and Gaussian primitive pruning, as well as recent compression methods for Gaussian splatting repre-
sentations. Finally, it presents related works in the literature of learned entropy modeling and point
cloud compression. These discussions provide the necessary context for the reader.

• Section 3 presents the relevant theoretical background for the methods used for the experiments. It in-
cludes prior knowledge for the experiments performed and detailed theoretical information, organized
in a manner similar to the related works for ease of understanding.

• Section 4, 5, and 6, cover the experimental results, a discussion of the results, and conclusion are
provided with visualizations and literature comparisons. The experiments performed for this semester
thesis are separated into mutually exclusive subsections to provide the logical flow for the decisions
we take throughout the thesis.
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Chapter 2

Related Work

2.1 3D Gaussian Splatting

With the introduction of seminal 3D-GS algorithm [15], the pace of the research field has been tremendous.
This chapter reviews significant advancements in the field of 3D Gaussian Splatting (3D-GS), focusing on
improvements to the seminal 3D-GS algorithm, hierarchical structuring, primitive pruning, and compression
methods that have been suggested so far for 3D-GS representation. In addition, we provide a brief introduc-
tion of relevant works in point cloud compression and learned entropy modeling for image compression.

2.1.1 Improvements Over 3D Gaussian Splatting Framework

Although the seminal work on 3D-GS [15] appears to be highly successful for novel view synthesis, multiple
works in a short time have provided improvements over the seminal work. Specifically, one of the early
improvements is Scaffold-GS [21]. Scaffold-GS employs a hierarchical structure for 3D Gaussian primitives
anchored on a sparse grid of 3D positions xv, and calls them “anchor points”. Each anchor point is assigned
a local context feature fv, a scaling factor lv, and a set of learnable offsets, Ov, which are used to generate
neural Gaussians that are rasterized later on. The “anchor points” are not rasterized but only used to create
neural Gaussians. By combining the learned offsets per anchor point and the scaling factor, the neural
Gaussian positions µi, are estimated using the anchor points and learnable offsets,

{µ0, . . . , µk−1} = xv + {O0, . . .Ok−1} · lv (2.1)

Similarly, together with the local context feature, camera direction
#»

dvc and camera distance, δvc, separate
multilayer perceptrons (MLPs) are utilized to estimate the neural Gaussian opacities, view-dependent col-
ors, quaternions, and scales. By employing the MLPs for each neural attribute and using anchor primitives,
Scaffold-GS achieves a representation that consumes 5× less memory for storage [21].
As a further revision to 3D-GS algorithm, Kheradmand et al. [17] propose visioning 3D Gaussians as ran-
dom samples drawn from a probability distribution (3D-MCMC) that represents the physical scene. By
integrating the framework of Markov Chain Monte Carlo (MCMC), specifically using Stochastic Gradient
Langevin Dynamics, the requirement for complex optimization process is eliminated. 3D-MCMC intro-
duces a noise term to the 3D Gaussian updates for exploration while allowing for a probabilistic approach
to optimizing the placement and properties of the Gaussians, removing the need for heuristic methods. As
a result, it replaces heuristic-based pruning and densification while achieving superior visual quality and
robustness compared to seminal 3D-GS [15]. Further details of 3D-MCMC will be described in Section 3.2
in depth.
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2.1.2 Hierarchical Scene Structuring and Gaussian Ordering

As an additional improvement over Scaffold-GS [21], Octree-GS [30] further evolves the hierarchical struc-
ture by introducing Level-of-Detail (LoD) techniques. To create an LoD structure, they utilize an Octree
[23] representation for anchor points that were proposed in Scaffold-GS [21]. In other words, they create K
levels of octree by quantizing voxel centers V ∈ RM×3,

V =

{⌈
P

ϵ

⌋
· ϵ, . . . ,

⌈
P

ϵ/(2K−1)

⌋
· ϵ/(2K−1)

}
(2.2)

where P are the anchor point locations. During novel view synthesis, they make use of the Octree bounding
box size to adaptively select the anchor points that will be used for rasterization in order to reduce the
computational complexity and alleviate rendering inefficiency in favor of more important anchor points.
Later on, the anchor points are used to estimate the neural Gaussian parameters similar to Scaffold-GS to
perform rasterization.
Likewise to extension of Scaffold-GS with an LoD structure in Octree-GS [30], the seminal 3D-GS [15] has
been also extended with an LoD structure for the purpose of novel view synthesis in extremely large scenes
[16]. Although the work introduces many novel ideas for the purpose of efficient novel view synthesis and
representing very large scenes, hierarchy generation is an influential idea which can be further extended
for more efficient scene representations. The authors implemented a hierarchical LoD structure that allows
parallel processing of smaller chunks of a large dataset. In order to generate a tree-based hierarchy with
interior and leaf nodes, they define leaf nodes as the actual Gaussian primitives and intermediate nodes as
3D Gaussians that are built from merging the children attributes. The merging process for the intermediate
node positions and covariances is defined as

µ(l+1) =
∑
i

wiµ
(l)
i (2.3)

Σ(l+1) =
∑
i

wi

(
Σ
(l)
i + (µ

(l)
i − µ

(l+1))(µ
(l)
i − µ

(l+1))⊤
)

(2.4)

where µ(l+1) is the position of intermediate node, µ(l)i is the i-th children of the specified intermediate node,
and wi are the normalized weights based on the contribution of each child. The dependency is also similar
for the covariance, Σ(l+1). The contribution of each child, wi is calculated based on the child’s opacity and
surface area,

w′
i = oi

√
|Σ′
i|, wi =

w′
i

N∑
j
w′
j

(2.5)

where oi is the opacity of the i-th child and
√
|Σ′
i| is estimated using the surface of a Gaussian from 3-σ

standard deviation level of a 3D Gaussian ellipsoid. With a similar weighting strategy, opacity and spherical
harmonics of children are also merged to create the attributes of parent intermediate nodes,

o(l+1) =
∑
i

wio
(l)
i , SH(l+1) =

∑
i

wiSH(l)
i (2.6)

where oi is the opacity and SHi is the spherical harmonic coefficients of the i-th child.
As a result of merging and tree hierarchy generation, different levels of the tree can be utilized for novel
view synthesis or granularity-based thresholds can be selected to choose only a subset of the tree structure.
In this way, fewer Gaussians would be utilized to synthesize a novel view. This structure can be further
utilized for inter-prediction of leaf nodes, i.e., actual Gaussian primitives.
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2.1.3 Gaussian Primitive Pruning

Gaussian primitive pruning and densification are important steps of primitive optimization in 3D-GS al-
gorithm, referred as “adaptive density control”. Since pruning and densification are counter-acting steps
where one removes Gaussians and other adds them, the densification step is criticized for being subopti-
mal and producing redundant Gaussians [20]. These steps have been further investigated by many research
[39, 27, 20, 4] to find more robust approaches that do not require hyperparameter tuning and yield more
compact representations.
To promote a smaller representation in terms of storage requirements, Gaussian primitive pruning is an im-
portant step, since the storage complexity of 3D-GS is linear in number of primitives. For that purpose,
RadSplat [27] is a highly relevant work for efficient pruning. Although the main idea of the work extends
to an improved version of 3D-GS [15] by providing supervision for optimization through the ZipNeRF [3]
prior, they also introduce a novel pruning technique which preserves the visual quality while reducing the
number of Gaussian primitives. Their pruning method, which we refer as “RadSplat pruning”, is applied
only once or twice throughout the entire training in order to only keep Gaussian primitives that have a max-
imum pixel contribution over a predefined threshold tprune ∈ [0, 1]. Further details of “RadSplat pruning”
method will be introduced in Section 3.3.
On the other hand, Lee et al. [20] focuses on pruning Gaussian primitives by using a learnable masking
strategy and introduce a compact representation of Gaussian attributes without compromising the quality of
rendered images. By utilizing a volume-based learnable masking strategy, they mask out small (low scaling
magnitude) and low-opacity Gaussian primitives. A learnable mask m helps to determine whether a Gaus-
sian should be removed. In addition, a masking loss, Lm, is introduced to balance the rendering accuracy
and pruning strength by penalizing the mask magnitude. The details of the learned masking method will be
elaborated in Section 3.3.

2.1.4 Gaussian Splatting Compression

Since the problem of storage complexity is one of the most important problems related to 3D-GS [11], there
has been multitude of recent work [20, 10, 6, 28, 39, 26] on compressing the Gaussian primitive attributes
in a short period of time.
As one of the first works on 3D-GS compression, LightGaussian [10] can provide approximately 15× re-
duction in the scene representation without decreasing the visual quality. Their methodology involves cal-
culating a global significance score per Gaussian based on its contribution to the rendering and pruning of
insignificant Gaussians. Additionally, they distill spherical harmonic coefficients, which comprise a large
part of the storage requirement. This distillation involves using full-degree spherical harmonics as teacher
models and supervising truncated low-degree spherical harmonics with a distillation loss, Ldistill,

Ldistill =
1

HW

HW∑
i=1

∥Cteacher(ri)− Cstudent(ri)∥2 (2.7)

where C(ri) corresponds to pixel intensities with teacher and student models. Furthermore, to compress
the Gaussian attributes excluding Gaussian positions, they utilize vector quantization for which they acquire
K codes per Gaussian attribute. After initializing K vectors in the codebook via K-means algorithm, they
perform batchwise expectation maximization while updating cluster means using moving average rule. Fi-
nally, they state that the Gaussian positions are compressed using lossless G-PCC [22] algorithm, although
their open-source code utilize DEFLATE compression algorithm [9].
Similarly, Niedermayr et al. [26] focus on creating compact codebooks in a sensitivity-aware manner. The
creation of compact codebooks depends again on perform K-means in a sensitivity-aware manner by con-
sidering feature gradients so that the cluster means are updated favoring higher maximum sensitivity of
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Gaussian primitives. After constructing the codebooks using sensitivity-aware K-means, the codebooks are
compressed using DEFLATE algorithm [9] for entropy coding.
Another notable technique involves a focus on reducing the number of Gaussian primitives and keeping
compact codebooks for Gaussian attributes [20]. For the pruning of Gaussians, Lee et al. propose using the
learnable Gaussian volume mask to prune away low-opacity and small Gaussians. Moreover, they utilize
residual vector quantization (R-VQ) [38] in contrast to the vector quantization-based methods discussed
above to reduce computational complexity [20]. Finally, instead of using spherical harmonics which require
high amount of parameters, Lee et al. utilize a hash-grid based neural field followed by a small MLP to rep-
resent view-dependent colors. Instead of training the compression algorithm end-to-end, they apply R-VQ
and learn codebooks for the last 1000 iterations.
Since the problem with the memory footprint of 3D-GS has been evident, the authors of seminal work [15]
suggested follow-up improvements to reduce the memory footprint [28]. Specifically, they propose size
reduction through a better pruning, better choice of spherical harmonic degrees of Gaussian primitives, and
codebook-based quantization. Firstly, to eliminate spatial redundancy, the number of overlapping primitives
in a spherical region is counted for a specific primitive. If the redundancy score which is calculated based on
the number of overlapping primitives is above an adaptive threshold determined for overall scene, the Gaus-
sian primitive is pruned. Secondly, they reduce the degree of spherical harmonics for redundant harmonic
coefficients. Since not all Gaussians require view-dependent effects, a base color is sufficient for most of
them. For that reason, the color of a Gaussian is evaluated from all viewpoints and only the base color is
used if the color has low variance from all viewpoints. Finally, they utilize K-means clustering to store only
the index to the closest value where K = 256 for their implementation. For the attribute codebooks, one for
opacity, one for scaling components, two for real and imaginary parts of rotation, one for the base color, and
one per spherical harmonics coefficients are created.
Although previously provided improvements for Gaussian splat compression provide low complexity solu-
tions, follow-up improvements on 3D-GS such as Scaffold-GS [21] offer for higher compression possibil-
ities. One work that uses the compact hierarchy of Scaffold-GS is HAC [6]. HAC leverages hash grids to
capture spatial correlation among unorganized “anchor points”. This structure allows for efficient context
modeling and entropy coding. Unlike previous works, the use of context modeling with learned entropy
models allows for higher compression efficiency. Specifically, they assume a Gaussian distribution for the
features with hyperprior information which estimates the feature statistics [25] and perform an adaptive
quantization step to perform learned compression. Finally, the hash grids are also binarized and included in
bit consumption and loss calculation using straight-through estimation [33].
Using a similar approach, ContextGS [35] uses an autoregressive context model at anchor level by building
a framework over Scaffold-GS [30] while having a high similarity to Octree-GS [30]. Anchors in coarser
levels help to predict the distribution of anchors at finer levels by creating a context that significantly im-
proves entropy coding efficiency. ContextGS [35] also incorporates a quantized hyperprior feature for each
anchor to further compress the representation. The proposed method can achieve a compression ratio of
more than 100x compared to standard 3D-GS [35].

2.2 Point Cloud Compression

As the Gaussian splat representation draws a high similarity to point-cloud representations, the point-cloud
compression methods has been influential in terms of compressing the positioning of 3D-GS representation.
Specifically, DEFLATE [9] has been a significant compression algorithm for multiple works [10, 26]. DE-
FLATE is a lossless data compression algorithm that combines the LZ77 algorithm and Huffman coding.
While the LZ77 algorithm replaces repeated occurrences with references to previous copies in the uncom-
pressed data stream, Huffman coding performs entropy coding to assign short codes to frequent symbols.
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On the other hand, G-PCC [22] as an MPEG compression standard has been adopted for use by [10] as
reported in their paper. However, as a proprietary point cloud compression method, this method is not in-
cluded in their open-source code. As a result, their shared work has been also using DEFLATE algorithm
for Gaussian primitive position compression.

2.3 Learned Entropy Modeling

Although the literature for learned entropy modeling is vast, we are only interested in two early models for
our main purpose of Gaussian primitive compression with two extensions: residual coding from traditional
video compression literature and multi-rate image compression method proposed by Cui et al. [8].
As one of the first works on learned image compression, Ballé et al. [1] proposed using a learned coun-
terpart of an image with a unique hyperprior entropy model, named fully factorized entropy model. The
fully-factorized entropy model utilizes a neural network structure to estimate the cumulative mass function
(CMF) of a probability distribution while constraining it to have value 0 at negative asymptote, value 1 at
positive asymptote, and a non-negative probability mass function over its domain. Using the learned CMF,
the entropy coding can be performed more efficiently by giving shorter bitstrings to symbols that occur
frequently as long as probabilities are estimated accurately. On the other hand, the fully-factorized entropy
model cannot capture statistical dependencies in latent distribution, leading to an overhead in compressed
representations [1]. The model details of fully-factorized entropy model are provided in depth throughout
Section 3.4.1.
For an important extension to the fully-factorized entropy model, Minnen et al. [25] propose a hierarchical
extension, which we refer to as “mean-scale hyperprior” network. The proposed hierarchical extension in-
troduces a hierarchical prior over the distribution of Gaussian primitive attributes and use the compressed
hyperprior as side information about the entropy parameters of the assumed Gaussian distribution. The
hierarchical prior is achieved by introducing a second subnetwork which learns a probabilistic model of
quantized latents by generating mean and standard deviation parameters of the conditional Gaussian en-
tropy model over quantized latents [25]. The architecture details will be introduced in Section 3.4.2
To achieve further efficiency and make use of similarities between frames, standards-based and learned
video compression methods make use of residual frame coding [31]. In the context of video compression,
the residual frame is calculated by subtracting a reference or prediction frame from the frame of interest.
By subtracting the prediction, the residual frame generally achieves a lower entropy than the target frame
itself. This procedure can be further utilized for Gaussian splatting representation compression as it will be
discussed in Section 3.5.
Finally, Cui et al. [8] achieve a multi-rate entropy model training using channel-wise quantization steps
learned prior to entropy coding. In this way, the Lagrangian parameters for the rate-distortion trade-off can
be linked with their respective scaling vectors that adjust the quantization steps while the rest of the model
is shared for all the rate-distortion trade-off levels [8]. Although this method does not introduce any gains
in terms of coding efficiency or visual quality, it can decrease the training time by more than 4× as only one
training becomes sufficient compared to training a separate model for each rate-distortion trade-off level.
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Chapter 3

Materials and Methods

3.1 Background: 3D Gaussian Splatting

3.1.1 Gaussian Primitive Structure

3D Gaussian Splatting (3D-GS) [15] builds a scene representation utilizing Gaussian primitives with their
mean µ, covariance Σ, and appearance attributes, color c and opacity σ(o).

τ(G) = exp

(
−1

2
(G− µ)⊤Σ−1(G− µ)

)
(3.1)

Since it is analogous to represent the covariance matrix Σ, using a scaling matrix S, and quaternion, R, each
Gaussian primitive is associated with its own scaling and quaternion to optimize them independently. In that
case, scaling parameters are 3 scalar values for the diagonal matrix S, and quaternions are 4 dimensional
vectors to capture the rotation of a Gaussian primitive. This way, the positive semi-definiteness constraint
on covariance matrix can be imposed while performing gradient descent optimization,

Σ = RSS⊤R⊤ (3.2)

where the quaternion is converted into rotation matrix R while making sure to normalize them to have valid
quaternion. Scaling matrix S is formed using a scaling vector on the diagonal of an identity matrix.
In addition, instead of using a 3 dimensional color attribute per Gaussian primitive, the appearance of a
Gaussian primitive is modeled using spherical harmonics (SH) [14] of a preset maximum degree in order
to capture the view-dependent color changes. This helps to improve the visual quality by modeling non-
Lambertian effects such as specular reflections.
During rendering, the color of a Gaussian can be efficiently calculated based on the viewing direction. The
SHs are evaluated using following formula with respect to SH degree l, viewing angle parameters θ and ϕ,

Y m
l (θ, ϕ) =

(−1)l

2ll!

√
(2l + 1)(l +m)!

4π(l −m)!
exp(imϕ)(sin θ)−m

dl−m

d(cos θ)l−m
(sin θ)2l (3.3)

where−l ≤ m ≤ l for a given SH degree l. By default, 3D-GS makes use of maximum SH degree lmax = 3.
In turn, a single Gaussian has 3 coefficients for degree 0 (due to red, green, and blue color channels) while
degree 3 has 21 coefficients due to the SH coefficients ranging from levels −3 to +3.
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The final color from the viewing angle θ, and ϕ is acquired through a weighted-average of Y m
l ,

fml =

∫
f(θ, ϕ)yml (θϕ) dθ dϕ (3.4)

c =

lmax∑
l=0

l∑
m=−l

fml Y
m
l (θ, ϕ) (3.5)

3.1.2 Differentiable Rasterization

As in the name of the method, the “splatting” operation is performed to project the Gaussian primitives on
the image plane and rasterize them in order to generate the final image. For that purpose, the calculated
covariance matrix Σ, and position µ, are projected onto 2D image plane using camera extrinsic parameters
W , and camera intrinsic parameters K. The projection of covariance and position to 2D is highly efficient
compared to ray-tracing based methods,

µ′ = K (Wµ/((Wµ)z)) (3.6)

J =
∂µ′

∂µ
(3.7)

Σ′ = JWΣW⊤J⊤ (3.8)

As a result, the impact of a Gaussian primitive on a pixel p, is calculated as,

fi(p) = σ(oi) exp

(
−1

2
(p− µ′i)⊤(Σ′

i)
−1(p− µ′i)

)
(3.9)

On the other hand the image formation is similar to NeRF-based novel view synthesis [24] in the sense that
Gaussian splatting also makes use of volumetric rendering formula to calculate the color for a pixel C(p),

C(p) =
N∑
i=1

ci(1− exp(σiδi)) exp

− i−1∑
j=1

σjδj

 (3.10)

=
N∑
i=1

ci(1− exp(σiδi))
i−1∏
j=1

exp(−σjδj) (3.11)

=

N∑
i=1

ci(1− exp(−σiδi))Ti (3.12)

where ci is the color, σi is probability of hitting a particle, δi is the distance from previous point, and Ti
is the transmittance. The volume rendering equation requires some adjustment for Gaussians. To draw a
similarity with Gaussian primitives, the density of 2D Gaussian primitives is utilized together with their
opacity. Specifically, using Equation 3.9 and opacity, we acquire the following volume rendering function,

C(p) =
∑
i∈N

cifi(p)
i−1∏
j=1

(1− fj(p)) (3.13)

This process is highly efficient, because projections of 3D Gaussians to 2D image plane are also Gaussian
as seen in Equation 3.9. In addition, the projections and sorting of Gaussians can be done on a GPU in
a parallelized fashion prior to image rasterization so that a re-projection is not required. The parallelized
sorting stage is performed on 16× 16 tiles where a single Gaussian can appear in multiple tiles.
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Finally, and crucially, since the procedure does not require ray-sampling, each Gaussian along a ray has a
significant impact and does not pose redundancy. These results yield an efficient, real-time algorithm which
can be highly parallelized since the Gaussian primitives are independent of each other, and the projection is
just completed with a couple of matrix multiplications.

3.1.3 Storage Complexity of Gaussian Primitives

Although the computation efficiency and high parallelizability of 3D-GS admits a very feasible approach,
the storage of Gaussian primitives yield an important problem. Based on scene complexity, a regular scene
might require from a few hundreds of thousands to millions of Gaussians. Recognizing the fact that each
Gaussian requires in total 59 parameters which are stored in single-precision floating-point format (float32),
a scene with 1 million Gaussians requires 225 MB memory. This memory requirement is significantly larger
compared to network-based novel view synthesis methods.

Figure 3.1: The parameter distribution of Gaussian primitives. The spherical harmonics with maximum
degree of 3 require 48 floating point values while position, scaling, rotation, and opacity require 3, 3, 4, 1
floating point values, respectively. This situation depicts the importance of high compression for spherical
harmonics.

When comparing the components of Gaussian primitives based on Figure 3.1, it becomes evident that large
part of the Gaussian primitives is composed of spherical harmonics for accurate view-dependent visualiza-
tion. On the other hand, geometric information such as position, scaling, and rotation tend to be highly
important for visually plausible images with correct localization.

3.1.4 Optimization of Gaussian Primitives

The optimization process with adaptive density control is a vital part of 3D-GS since Gaussians need to ad-
here to certain conditions, i.e. semi-definiteness of covariance while achieving close-to-optimal parameters
for rasterization. Ensuring the accuracy of the scene representation, this process preserves the efficiency of
the approach by pruning and densifying the Gaussian primitives.
Optimization process is initialized from a set of sparse points obtained from COLMAP [32] with Structure-
from-Motion (SfM) [34] algorithm. Using the sparse points as initial positions for Gaussians, the base color
is assigned to 0-th degree components of the 0-th degree of the spherical harmonics, while the opacity is
initialized with 0.1, scaling initialized with the distance to the closest position, and the rotation is initialized
with 0 vector.
Throughout the training process, the differentiable nature of rasterization described in Section 3.1.2 allows
the performing of gradient descent updates on the attributes of Gaussian primitives while also spawning
new Gaussians and pruning unimportant ones. Specifically, the loss function utilized for optimization is a
combination of L1-loss and structural dissimilarity index measure (D-SSIM) on training views synthesized
using Gaussian primitives and ground truth view,

L = (1− λdssim)× L1(f(x̂), f(x)) + λdssim × D-SSIM(f(x̂), f(x)) (3.14)
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where f(x̂) is the rasterized image from Gaussian primitives and f(x) is the ground truth image. For the
adaptive densification and pruning of Gaussian primitives, the optimization process splits, clones or prunes
Gaussians at every 100 iterations until 15, 000 iterations.
Pruning. In order to prune Gaussians, the opacity of Gaussian primitives are considered. Specifically, if a
Gaussian primitive achieves an opacity below a threshold, 0.005, the Gaussian primitive is removed entirely
since it does not contribute much to the novel view synthesis. Furthermore, if a Gaussian has a radius greater
than a predefined scene extent, the point is removed to reduce the rasterization complexity and potentially
improve the optimization process.
Densification. If a Gaussian has a high gradient with respect to its position, this indicates that the Gaussian
can benefit from being split or cloned into two separate Gaussians to simplify the optimization process,
i.e., reduce the gradient magnitude. A Gaussian is chosen for densification if the magnitude of the position
gradient, ∂L/∂µ, is above a threshold, 0.0002. In that case, the Gaussian is splitted if its maximum scale
(equivalently, maximum eigenvalue magnitude of covariance) is above a specified threshold, 1% of camera
extent. By splitting a Gaussian, the scale of the split parts of the Gaussian is divided by 1.6 while keeping
the rotation and the rest of the parameters the same. On the other hand, if the maximum scale is below the
specified threshold, the Gaussian is cloned entirely with all its parameter kept same. The overall optimization
process can be better visualized in the decision tree in Figure 3.2.
Although the described algorithm works well in practice, it is well-known for producing redundant Gaus-
sians with little contribution. For that purpose, 3D-MCMC [17] is proposed for a better optimization proce-
dure and described in Section 3.2.

Figure 3.2: Gaussian splatting densification and pruning algorithm in a decision tree format. Gaussian
splatting algorithm requires adding or removing Gaussian primitives periodically (once in every 100 itera-
tions) using the described algorithm. The hyperparameters for optimization are used as is from the original
3D-GS descriptions [15].
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3.2 Improving 3D-GS through Markov Chain Monte Carlo (MCMC)

As the optimization procedure introduced with 3D-GS [15] is prone to generate many redundant or inef-
fective Gaussians, several works [39, 27, 20, 4] proposed to reduce the number of Gaussians in different
ways. Recently, Kheradmand et al. [17] proposed considering Gaussian primitives as samples from a prob-
ability distribution through a simpler process involving “relocalizing” Gaussians and regularizing Gaussian
scales and opacities to achieve improved rendering quality and a more robust optimization procedure without
heuristic-based methods.
As the updating method for Gaussian primitives makes use of the Stochastic Gradient Descent, it can be
converted into a Stochastic Gradient Langevin Dynamics (SGLD) update through the introduction of noise
in an MCMC framework. As a result, regions in a scene can be explored naturally while reducing the
dependency on initialization. The conversion from SGD to SGLD requires updating the update steps in the
following form with noise introduction,

θ ← θ − λlr · ∇θEI∼I [L(θ; I)] + λnoise · ϵ (3.15)

The full loss function, L, is designed as,

L = (1− λdssim) · L1(x̂, x) + λdssim · D-SSIM(x̂, x) + λo ·
∑
i

|oi|1 + λΣ ·
∑
ij

∣∣∣√eigj(Σi)
∣∣∣
1

(3.16)

where x̂ is the rasterized image, x is the ground truth image, oi is the i-th Gaussian’s opacity parameter, and
Σi is the covariance matrix of i-th Gaussian. The hyperparameters are set as λdssim = 0.2, λlr = 1.6e− 4,
λnoise = 5× 105, λΣ = 0.01, and λo = 0.01. Note that the designed loss function is different from 3D-GS
[15] loss function in Equation 3.14 as additional terms for opacity, oi and covariance Σi promote lower
opacity and lower scaling parameters for Gaussians. Since Gaussians with lower opacity and lower scale
Gaussians are pruned later on, the new loss function regularizes non-useful Gaussians to have lower values
for opacity and scaling.
In order to design the additive noise term, ϵ, special consideration is required to prevent forcing accurate
Gaussians out of support regions while allowing them to move out for inaccurate ones. For that reason, a
special noise term is defined to promote low opacity and high scale Gaussians to be exposed to larger noise,

ϵ = λlr · σ(−k(o− t)) · Ση (3.17)

where η ∼ N (0, I), σ is sigmoid function, k = 100, and t = (1− 0.005) for sharp transitions.
Another important contribution is through reinterpreting the pruning and densification steps as “relocation”
of “dead” (oi < 0.005) Gaussians. Specifically, the dead Gaussians are relocated to live Gaussians using
multinomial sampling based on probabilities proportional to opacities of live Gaussians.
However, such cloning operation should preserve the state probabilities (i.e. P(gold) ≈ P(gnew)) to prevent
MCMC sampling from collapse into a few states where the state is defined as all attributes of a Gaussian. To
satisfy this, the relocation strategy takes N − 1 Gaussians satisfying the “relocation” condition from their
respective states gi and relocates them to a state of another Gaussian, gN . The updated parameters of N −1
Gaussians after relocation are derived as following,

µnew1,...N = µoldN (3.18)

onew1,...N = 1− N

√
1− ooldN (3.19)

Σnew1,...N =
(
ooldN

)2
((

i− 1

k

)
(−1)k(onewN )k+1

√
k + 1

)−2

ΣoldN (3.20)

For densification, the number of Gaussians are increased by 5% at each iteration until a preset maximum
number of Gaussians, Nmax. Similar to “relocation”, new Gaussian primitives are created at locations using
multinomial sampling based on probabilities proportional to opacities of live Gaussians.
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3.3 Gaussian Primitive Pruning

Following the general consensus with previous compression methods for 3D-GS [20, 26, 6], we apply prun-
ing to Gaussian primitives to reduce the storage complexity, which is linear in number of primitives.
For that purpose, we evaluated the impact of the “RadSplat pruning” [27] technique that preserves visual
quality while reducing the number of Gaussian primitives. The idea with RadSplat pruning is to keep
Gaussian primitives that have a maximum pixel contribution over a predefined threshold, tprune ∈ [0, 1],

fi(p) = σ(oi) exp

(
−1

2
(p− µ′i)⊤(Σ′

i)
−1(p− µ′i)

)
(3.21)

Ti(p) =
i−1∏
j=1

(1− fj(p)) (3.22)

mi = m(pi) = 1(max
r∈If

f ri T
r
i < tprune) (3.23)

where µ′i is the 2D projected position, Σ′
i is the 2D projected covariance, r ∈ If are all rays forming all

pixels in the training dataset, and f ri T
r
i is the ray contribution of i-th Gaussian primitive for the ray r during

rasterization of splatted Gaussians. We apply RadSplat pruning only twice throughout the entire training, at
16K and 24K iterations. For the maximum pixel contribution threshold, we set 0.01 to remove Gaussian
primitives which contribute less than this amount. For the rest of the training parameters, we keep everything
same as proposed in 3D-MCMC [17] for a fair comparison with the case without pruning.
As a second method for pruning, we evaluate the learnable masking strategy [20] and mask out small (low
scaling magnitude) and low-opacity Gaussian primitives. A learnable mask m helps to determine whether a
Gaussian should be removed. The mask is generated as follows,

Mn = stop-gradient (1 [σ(mn) > ϵ]− σ(mn)) + σ(mn) (3.24)

where “stop-gradient” operator ensures gradients are not propagated through binary decision process, σ is
sigmoid operator, mn is the learnable mask parameter, and ϵ is the user specified threshold. Note that Mn

is a binary matrix that can achieve the values Mn ∈ {0, 1}. Using calculated mask, we retrieve the masked
scaling and opacity vectors as,

ŝn =Mnsn, ôn =Mnon (3.25)

which effectively removes a Gaussian primitive by making it invisible and suitable for pruning. In addition,
a masking loss, Lm, is introduced to balance the rendering accuracy and pruning strength by penalizing the
mask magnitude,

Lm =
1

N

N∑
n=1

σ(mn) (3.26)

3.4 Learned Entropy Models for 3D Gaussian Primitive Compression

Although the previous 3D-GS compression methods discussed in Section 2.1.4 allowed significant com-
pression ratios, the majority of them (except for the concurrent work HAC [6] and Context-GS [35]) do not
utilize learned entropy models for Gaussian primitive compression. As appears in image / video compres-
sion, the learned codecs managed to surpass the traditional codecs in recent years [13]. Thus, it is sensible
to utilize learned codecs also for the purpose of Gaussian primitive compression. Consequently, inspiration
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Figure 3.3: An overview of lossy compression pipeline in high level. A compression pipeline is composed
of an analysis transform to map signals to a low-entropy representation, quantization for applicability, en-
tropy modeling for efficient coding, and synthesis transform to map signal back into domain of interest.

can be drawn from the image compression literature to build learned entropy models and improve the coding
efficiency for 3D-GS.
As depicted in Figure 3.3, for lossy image/video compression four main building blocks are required: an
analysis transform, quantization, entropy model for entropy coding, and synthesis transform. To optimize
the bitrate while also keeping a high quality signal, we require to perform rate-distortion optimization with
a join loss function. In the context of rate-distortion optimization, rate is the expected code length which
can be written as cross-entropy when using the entropy coding technique [1],

Rate = Ey∼py
[
− log2 pŷ (⌊y⌉))

]
(3.27)

where pŷ is the entropy model, and ⌊·⌉ is the quantization operator. However, as quantization is a non-
differentiable operation, the quantization step is approximated with a noisy representation ỹ during training
whereas ŷ stands for actual quantized representation. Accordingly, for a given entropy model pŷ, the rate-
distortion loss function is calculated as,

L = D(f(x), f(x̂)) + λ Rate (3.28)

where f(·) is the rasterization function from Gaussian primitives x, D is the distortion measure between
ground truth image and prediction rendered image, and λ controls for the trade-off between rate and dis-
tortion. As our distortion metric, we utilize the same distortion metric as 3D-GS [15] and use a weighted
combination of image L1-loss together with image D-SSIM loss as in Equation 3.14. In addition, we regu-
larize the Gaussian primitive attributes using the optimized attributes so that training for compression does
not cause a large deviation from optimized values,

L = (1− λdssim) · L1(f(x̂), f(x)) + λdssim · D-SSIM(f(x̂), f(x)) + λ Rate

+λrec

[
L1(ŝ, s) + L1(r̂, r) + L1(ô, o) + L1(ŜH, SH)

] (3.29)

where λdssim = 0.2, λ ∈ {0.005, 0.001, 0.0001}, and λrec = 0.2. Note that for the case of Gaussian
primitive compression, x ∈ R59 since each Gaussian primitive has 59 scalar attributes and rate is calculated
over the quantized representation of these attributes except position, µ. The reason for excluding µ from
compression with the learned entropy model is that the position information is highly sensitive to noise.
For our experiments, we randomly sub-sample the Gaussian primitives for compression since compressing
over 1M Gaussian primitives in each iteration is not feasible and slows down training significantly. For
that reason, we subsample 10% of Gaussian primitives for compression and only backpropagate over these
samples in respective iteration. For the optimization process of both the Gaussian primitive parameters
and the learned entropy model parameters, we utilize Adam optimizer [18] with a learning rate of 0.01,
β = (0.9, 0.999) for running averages.
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3.4.1 Fully-Factorized Entropy Modeling

A fully-factorized entropy model estimates the probability distribution for a latent representation [1] while
assuming independence of features. The probability mass function (PMF) pỹ : Z → [0, 1] is used for
feature-wise distribution modeling of input ỹ. The fully-factorized entropy model is most suitable for in-
dependent and identical distributions where features are not correlated. If such a correlation exists, fully-
factorized entropy model cannot make use of the correlation.
To build a fully-factorized entropy model, the cumulative mass function (CDF) associated with the PMF is
approximated using a fully-connected network of 4 layers where the CDF is not conditioned on any other
information. As a result, derivative of the fully-connected network is the PMF function,

pỹ|ψ =
∏
i

(
pyi|ψ(i)

(
ψ(i)

)
∗ U

(
−1

2
,
1

2

))
(ỹi) (3.30)

where ψ(i) stand for the univariate distribution parameters and U is additive uniform noise to approximate
quantization while allowing differentiability during backpropagation. This derivation remains highly ef-
ficient thanks to automated differentiation frameworks. As a result, the bitrate R for the loss calculation
can be estimated and penalized using the above defined full-connected network with uniform additive noise
(“soft quantization” [1]) on latent representation to simulate rounding operation. During inference time,
rounding operation is utilized for quantization as usual.
For our purposes of Gaussian primitive compression, the fully-factorized entropy model is utilized for a
part of our analysis. During Gaussian primitive compression, the optimization of analysis ga, and synthesis
gs, transforms depicted in Figure 3.3 are found to be highly unstable since learning a mapping from and to
Gaussian primitives is a difficult problem that is solved through direct optimization of Gaussian parameters
in the 3D-GS framework [15].

Figure 3.4: An overview of fully-factorized entropy model. The fully-factorized entropy model is utilized
for a part of the analysis for learned Gaussian primitive compression. The green modules depict the learned
components such as MLP layers or quantization parameters s. Note that the quantization scale s is shared
for analysis and synthesis transforms. The orange modules are the fixed operations such as quantization and
entropy coding through learned entropy model.

For that reason, we only scale the input Gaussian parameters using learned parameters per input channel
prior to applying quantization, denoted as s as depicted in Figure 3.4,

ga(x) = s⊙ x (3.31)
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where x is a flattened version of Gaussian primitive attributes: scaling, s, rotation, r, opacity, o, and spherical
harmonic coefficients, f . Note that the position of Gaussian attributes, µ, is not compressed using the
learned entropy model but compressed through lossless DEFLATE [9] compression algorithm due to the
high sensitivity of position information. The learned scaling parameters help us to quantize the sensitive
parameters with a smaller quantization step and thus, allowing for lower distortion on them while less
sensitive parameters such as spherical harmonics are quantized with larger quantization steps. For our
experiments, we initialize the learned scaling parameters from 20 based on our trials.
Furthermore, for entropy modeling, the CMF of input x is modeled using aK = 4 layer MLP with a specific
structure, c = fK ◦ fK−1 ◦ · · · f1 as described in [1]. Using the network layers fi, the features are processed
so that each feature is processed by a filter with 3 channels. Again, note that the derivative of the CMF
yields the PMF which can be calculated through automated differentiation, p = f ′K ◦ f ′K−1 ◦ · · · f ′1. For the
functions described by each layer, we have,

fk(x) = gk

(
H(k)x+ b(k)

)
(3.32)

gk(x) = x+ a(k) ⊙ tanh(x) (3.33)

fK(x) = σ
(
H(K)x+ b(K)

)
(3.34)

In order to have a valid PMF, the derivative of CMF, ∂c/∂x is constrained by using,

H(k) = softplus
(
Ĥ(k)

)
(3.35)

a(k) = tanh
(
â(k)

)
(3.36)

This special definition of MLP helps us to build an approximation of a valid probability distribution with
CMF upper-bounded by 1, and PMF lower-bounded by 0. In order to train the learned entropy model, rate-
distortion loss calculated in Equation 3.29 is used for gradient descent algorithm where rate is estimated
using the learned entropy model parameters.

3.4.2 Hierarchical Entropy Modeling

Although fully-factorized entropy model [1] described in Section 3.4.1 is capable of modeling the proba-
bility distribution at relatively simpler cases, a more sophisticated entropy model is built with hierarchical
priors [25]. The hierarchical entropy model, also referred as mean-scale hyperprior entropy model, exploits
more structure in the latent representation compared to fully-factorized priors [1] by conditioning latent
distribution on additional information shared with the decoder.
Hierarchical entropy modeling utilizes hyper-latents, z, in order to provide more information regarding the
probability distribution of the latent, y. Specifically, the probability distribution of the latent representation
of a signal is modeled using a Gaussian distribution and the parameters of the distribution (per feature mean,
µi, and standard deviation, σi) are estimated using the hyper-latents while the hyper-latent distribution is
modeled using a fully-factorized model [1] as described in Section 3.4.1,

pỹ|z̃, θhd =
∏
i

(
N

(
µi, σ

2
i

)
∗ U

(
−1

2
,
1

2

))
(ỹi)

with µi, σi = gh(z̃ | θhd)
(3.37)

pz̃|ψ =
∏
i

(
pzi|ψ(i)

(
ψ(i)

)
∗ U

(
−1

2
,
1

2

))
(z̃i) (3.38)
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where hyper-latent, z̃ is estimated using the hyper-encoder network with parameters, θhe and uniform noise
instead of hard quantization to not disrupt differentiability. Later on, the quantized hyper-latent is decoded
using the hyper-decoder, θhd to estimate the entropy parameters, µi, σi of the latent, ỹ. The decoded entropy
parameters are utilized for entropy coding the latent, ỹ. The full overview of the devised lossy codec with
hierarchical entropy modeling is depicted in Figure 3.5.

Figure 3.5: An overview of hierarchical entropy model with Gaussian conditional probability model. A
hyper-network is utilized to model Gaussian primitive parameters using a conditional Gaussian distribution.
The green modules depict the learned components such as MLP layers or quantization step sizes like s.
Note that the quantization scale s is shared for analysis and synthesis transforms. The orange modules are
the fixed operations such as quantization and entropy coding through learned entropy model. The blue box
depicts the entropy parameters estimated by the “Hyper Network”.

The hierarchical entropy modeling allows for a higher quality entropy modeling compared to fully-
factorized entropy modeling since the fully-factorized model fails to capture complex dependencies, assum-
ing independent and identical distribution [25]. On the other hand, the hyperprior network with hierarchical
entropy modeling can capture statistical dependencies between different parts of an image, leading to more
efficient entropy modeling.
To calculate the final loss, we sum up the bitrate for both hyperprior latent, z and scaled Gaussian primitives,
y,

L = D(f(x), f(x̂)) + λ · (Ratey +Ratez) (3.39)

where distortion is estimated same as calculated in Equation 3.29 with additional L1-loss terms to have more
guidance on opacity, scaling, and rotation information of Gaussian primitives. Similar to previous derivation
of rate-distortion loss, λ stands for the Lagrangian of rate-distortion trade-off. Note that we also refer to
hierarchical entropy modeling as “mean-scale hyperprior” entropy model as the hyperprior network’s goal
is to predict the mean and standard deviation (scale) for the latent representation of Gaussian primitives.
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3.4.3 Multi-rate Entropy Modeling and Rate Adaptation

As a further addition to learned entropy models, Cui et al. [8] introduce “gain units” to scale quantiza-
tion steps and achieve rate-adaptation in one single model instead of training multiple models for multiple
bitrates. This method can be analogously applied to Gaussian splatting representation compression.
To achieve multiple bitrates in a single compression model, multiple scaling vectors s (as depicted in Figures
3.4 and 3.5) are learned in one training instance. Recall that the scaling parameters in Sections 3.4.1 and
3.4.2 have the dimensionality same as the number of attributes, that is, s ∈ RC . With multi-rate adaptation,
we learn a matrix S ∈ RL×C where L is the number of rate distortion levels (i.e. bitrate levels). Bitrate
levels are associated with the Lagrangian parameters of the compression loss function as in Equation 3.28.
Consequently, we set L = 4 for {λ0 = 0.005, λ1 = 0.001, λ2 = 0.0005, λ3 = 0.0001} and associate
each with a different row of the learned scaling matrix S, {s0, s1, s2, s3}. The learned scale vectors must
be positive to have a meaningful effect on the importance and quantization steps of the features. For that
reason, the scaling operation is performed by multiplying with the absolute value of the scaling vector, |si|.
An additional benefit of having multi-rate adaptation through training for multiple bitrates is that we can
achieve intermediate bitrate levels through exponential interpolation as well. Specifically, subsequent scal-
ing vectors can be exponentially interpolated in order to achieve intermediate levels. For example, for a
bitrate level decomposed as r = int(l) ∈ [0, L− 1] , t = l − int(l) ∈ [0, 1), we can perform an exponen-
tial interpolation as sinterp = s

(1−l)
r · s(l)r+1.

In addition, the multi-rate adaptation with multiple scaling vectors for latent representation is applied for
hyperprior network in hierarchical entropy modeling described in Section 3.4.2 as well. As a result, instead
of training single scaling vector for each training corresponding to single bitrate, we train L = 4 sepa-
rate scaling vectors in single training which correspond to multiple bitrates covered by multiple Lagrange
multipliers, {λ0 = 0.005, λ1 = 0.001, λ2 = 0.0005, λ3 = 0.0001}.

3.4.4 Disjoint Position Compression

In order to compress the position information for Gaussian primitives, we evaluated the DEFLATE [9]
and G-PCC / TMC13 [22] algorithms. Due to the position-sensitive nature of Gaussian primitives, we
avoid compressing the Gaussian positions with learned entropy models. For our tests with the DEFLATE
algorithm, we reduced the precision of Gaussian primitive positions from a single precision floating point
(float32) to a half-precision (float16) and applied the DEFLATE algorithm. Specifically, the DEFLATE
algorithm replaces repeated occurrences with references to previous copies in the uncompressed data stream
and applies Huffman coding for entropy coding. For that reason, the position compression with DEFLATE
algorithm is not a learned process but a lossless compression process after reducing precision).
Secondly, we experiment with the G-PCC / TMC13 [22] algorithm for position compression. Although
the method is proposed for point-cloud compression, it can be utilized for Gaussian primitive positions
analogously. For TMC13, the point cloud is initially voxelized and quantized for octree encoding. Later,
the octree structure is serialized to efficiently encode the positions of primitives. Predictive and residual
coding methods are applied to exploit the spatial redundancy and the octree data with residuals are further
compressed using entropy coding. To utilize TMC13, we utilize the out-of-the-box repository provided by
MPEG.

3.5 Hierarchy Generation

Although our main objective is compressing the Gaussian splatting representation, the compression of Gaus-
sian primitives can benefit from correlation among them. For that reason, we experiment on building a tree
hierarchy on Gaussian primitives. Specifically, we are inspired from [16] and modify their algorithm to build
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an octree structure where the scene is covered with a 3D bounding box and the bounding box is segmented
into 8 regions at every depth of the octree, as visualized in Figure 3.6. By compressing the node attributes of
the octree that is built, we use the information from compressed node attributes to perform residual coding
on Gaussian attributes.
For that purpose, the proposed algorithm can be defined in two steps: First of all, the octree is built using
the already calculated Gaussian primitives based on the position of the primitives. Later, the attributes of
Gaussian primitives lying in the same leaf node are aggregated, and the aggregation is continued upward
in the tree structure so that the aggregation continues until the desired depth level starting from leaves to
root. For the final part, the aggregated node attributes are utilized for calculating residual attributes for each
Gaussian primitive, and the residual information is encoded and decoded separately.

Figure 3.6: A high-level visualization of octree structure [7]. An octree is created by dividing the 3D
space into 8 pieces for each bounding box that is non-empty. As a result, a tree structure is acquired where
close Gaussians are children of the same node.

3.5.1 3D Gaussian Octree Building

In order to build an octree hierarchy over Gaussian primitives, we set an initial axis-aligned bounding box
(AABB) over Gaussian primitives. The bounding box size is extended by 1.01× along all axis-aligned
dimensions and covers all primitives. Later on, each Gaussian primitive is assigned to one of approximately
8d nodes at depth level d until dmax. For our case, we set dmax adaptively to avoid over-merging Gaussian
primitives since a lower maximum depth causes many Gaussian primitives to collapse into single node. The
adaptive calculation for the depth level is calculated as,

dmax =

⌈
max (lx, ly lz)

0.01

⌉
(3.40)

d = dmax − 5 (3.41)

where lx, ly, lz are the axis-aligned length of AABB over Gaussian primitives and d is the chosen node
level to provide predictions for the Gaussian primitives. As each scene representation has between 500K
and 5M Gaussians. The octree building has to be highly parallelized in order to be fast. For that reason,
the code for building an octree is prepared in C and CUDA programming languages to allow a low-level
implementation. The algorithm for building the octree structure can be viewed in Algorithm 1. As a result
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of the process involving octree building, each Gaussian primitive is assigned to a set of intermediate octree
nodes at all depths between d and dmax are stored for residual coding.

Algorithm 1 Octree Building Kernel. The octree building kernel is utilized in a parallel manner on all
Gaussian primitives in order to assign them to the nodes that they belong to and store it in a matrix where
rows are for each Gaussian primitive and columns are for each depth level. A point, corners of initial
axis-aligned bounding box (AABB), and maximum octree depth are provided to the kernel.

1: procedure RECURSIVE OCTREE KERNEL(point, aabb min, aabb max, max depth)
2: Initialize current min, current max← aabb min, aabb max
3: Init node idx← 0
4: for depth← 0 to max depth− 1 do ▷ Iterate until desired depth level

5: mid← current min+ current max

2
▷ Middle point of the axis-aligned bounding box

6: octant← 0
7: for i← 0 to 2 do
8: if point[i] ≥ mid[i] then
9: octant← octant | (1≪ i) ▷ Shift octant according to point position and mid

10: current min[i]← mid[i] ▷ Subdivide the AABB into new pieces for current point
11: else
12: current max[i]← mid[i]
13: end if
14: end for
15: node idx← node idx× 8 + octant ▷ Assign a node id to the intermediate node
16: end for
17: end procedure

3.5.2 3D Gaussian Primitive Aggregation

After forming the octree by utilizing the Algorithm 1, the node attributes need to be propagated from actual
Gaussian primitives to octree nodes by weighted averaging. The implementation of this process is again
inspired from [16]. In order to aggregate the Gaussian primitive attributes into node attributes, we first
calculate a scalar weight per Gaussian primitive which are essentially based on the opacity of primitive and
the surface area of the Gaussian,

w′
i = oi ×

(
3
√
|Σi|

)
, wi =

w′
i∑N

j=1w
′
j

(3.42)

where 3
√
Σi calculates the characteristic length of the ellipsoid to approximate the surface area upto a factor

and scaled later on by the opacity of Gaussian. We use the calculated weights to apply weighted averaging
on positions, covariances, spherical harmonics and opacities of Gaussian primitives that are children of same
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leaf node of the octree structure,

µ(l+1) =
∑
i

wiµ
(l)
i (3.43)

Σ(l+1) =
∑
i

wi

(
Σ
(l)
i + (µ

(l)
i − µ

(l+1))(µ
(l)
i − µ

(l+1))⊤
)

(3.44)

o(l+1) =
∑
i

wio
(l)
i (3.45)

SH(l+1) =
∑
i

wiSH(l)
i (3.46)

The process of aggregation is continued until reaching the desired depth level of the octree structure that will
be used for predictions before calculating the residual attributes of Gaussian primitives. At each intermediate
octree depth level, we utilize the attributes of children nodes to apply weighted averaging instead of the
Gaussian primitives that lie in the target node.

3.5.3 Residual Coding Using Lower Hierarchy Levels As Predictions

After computing the intermediate node attributes for the desired depth level, the respective node attributes
for each Gaussian are used as predictions. As predictions tend to deviate from actual attributes, the differ-
ence between the actual Gaussian attributes and the predicted attributes (node attributes) are compressed in
addition. The difference ∆ = x − n, where x stands for Gaussian primitive attributes, n stands for node
attributes at depth level l as calculated in Equation 3.40, has the same dimensionality since ∆, x, n ∈ R59

as each Gaussian primitive has 59 scalar attributes for position, scaling, rotation, opacity, and spherical
harmonics.
Recall that the aggregation of Gaussian covariance information was performed directly over the calculated
covariance and not the scaling and rotation components. To compress the predicted Gaussian covariance
matrices, we experiment with both compressing directly the covariance matrix or scaling and rotation pa-
rameters. For the case of scaling/rotation compression, we decompose the covariance matrix into scaling and
rotation matrices after calculating the aggregated node covariance using Equation 3.44. The decomposition
is performed utilizing eigen-decomposition,

Σ = V ΛV −1, S = Λ1/2, R = V (3.47)

After decomposing the predicted Gaussian covariance matrix, the rotation and scaling components are com-
pressed. For decompressed rotation R, we ensure that eigenvectors are normalized, and for decompressed
scaling S, we ensure that eigenvalues are positive by clamping to a minimum value 1e− 6. For the case of
covariance compression, the node covariance is factorized using Cholesky factorization to ensure a positive-
semidefinite matrix after compression,

Σ = LLT (3.48)

The lower half of lower triangular matrix is compressed/decompressed and the covariance is reconstructed
using lower triangular matrix again. For both cases, the attribute differences (residuals) are computed by
directly subtracting the attributes. Specifically, we calculate the residuals for Gaussian primitive position,
covariance (or scaling/rotation), opacity, and spherical harmonics by subtraction. The residuals are encoded
independently using the same compression model architecture as described in Section 3.4.2. Finally, we
make sure that the reconstructed covariance matrix is positive semidefinite by clamping the eigenvalues
to be positive when compressing directly the covariance matrix. As the assignment of Gaussian primi-
tives to intermediate nodes is necessary information to use them as predictions, the node assignments are
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compressed separately for decoding at a low cost. A high-level overview of the proposed residual coding
algorithm for Gaussian primitives can be seen in Figure 3.7.

Figure 3.7: An overview of the residual coding framework for compressing Gaussian primitives. The
green modules depict the learned components such as MLP layers or quantization step sizes like s. Note
that the quantization scale s is shared for analysis and synthesis transforms within each branch. The orange
modules are the fixed operations such as quantization and entropy coding. For the entropy model compo-
nents, mean-scale hyperprior can be utilized instead of fully-factorized entropy model.

3.6 Resources and Framework of Implementation

For the implementations and experimentation during the preparation of this report, the deep learning frame-
work PyTorch [29] is utilized. In addition, compression methods are used with adaptations and templates
provided in the CompressAI deep image / video compression library [5]. In addition, custom operations that
are suitable for parallelization such as octree generation and attribute aggregation described in Section 3.5
are implemented in C and CUDA programming languages for efficiency.
Throughout the project, Biomedical Image Computing (BMIC) computation resources and compute clusters
are utilized. Specifically, all entropy model trainings and Gaussian primitive optimizations are performed
on one NVIDIA RTX A6000 GPU for parallelized computing.
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Chapter 4

Experiments and Results

After utilizing methods described in Chapter 3, results in current chapter are acquired for utilization of
Gaussian splatting, pruning, and compression methods. In section 4.2, a close inspection of 3D-MCMC
[17] against seminal 3D-GS [15] will be presented. Later, the impact of pruning and the comparison of
learned masking [20] with RadSplat pruning [27] will be depicted in Section 4.3. Finally, fully-factorized
[1] and mean-scale hyperprior [25] entropy models will be evaluated and analysis of residual coding for
Gaussian primitives will be presented in Section 4.4 and 4.5, respectively.

4.1 Metrics and Datasets

Metrics. For the experiments performed throughout this chapter, the general consensus in Gaussian Splat-
ting literature is followed. For metrics, the methods are evaluated using Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Metric (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) [40]. In
addition, the size of Gaussian splatting representation is calculated in mega-bytes (MB) and number of
Gaussians are reported for Gaussian primitive optimization. As the Gaussian primitives are no longer den-
sified and pruned during compression stage, the number of Gaussians is omitted in tables after Section 4.3
for the sake of conciseness.
Datasets. The evaluation is performed on well-known and public scenes from Tanks & Temples [19], Deep
Blending [12], and Mip-NeRF 360 [2] datasets. For all scene related parameters such as scenes, frame IDs,
and image resolution, we follow the same parameter choices specified in seminal 3D-GS method [15].

4.2 3D Gaussian Splatting Optimization Improvement

In order to achieve a superior rate-distortion performance, the optimization of actual Gaussians in a 3D-
GS framework is essential. For that reason, we utilize an improved version of 3D-GS in order to improve
visual quality without increasing the number of Gaussian primitives, namely 3D-MCMC [17]. In contrast
to other works such as HAC [6] and Context-GS [35], our use of 3D-MCMC conforms with the highly
adopted 3D-GS framework instead of Scaffold-GS. In order to train both 3D-GS and 3D-MCMC, we use
the hyperparameters described in Sections 3.1 and 3.2.
As 3D-MCMC framework for 3D-GS also allows for control on number of Gaussian primitives, a fair
comparison with similar number of Gaussian primitives depicts the visual superiority of 3D-MCMC quan-
titatively in Table 4.1. To achieve similar number of Gaussian primitives, we first optimize the 3D-GS [15]
Gaussian primitives and then set the Nmax close to the number of final Gaussian primitives optimized with
3D-GS. The parameters that are set for each scene can be found in Tables A.1, A.2, and A.3.
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Note that the change in the optimization framework through 3D-MCMC does not cause any change in the
type of parameters of Gaussian primitives. In addition, as both models have similar number of Gaussians
with same parameters, the memory requirement are the same for both models.

Tanks&Temples DeepBlending Mip-NeRF 360

Method # Gaussians PSNR / SSIM / LPIPS # Gaussians PSNR / SSIM / LPIPS # Gaussians PSNR / SSIM / LPIPS

3D-GS [15] 1,834,587 23.68 / 0.848 / 0.176 2,818,819 29.57 / 0.904 / 0.244 3,322,968 27.47 / 0.815 / 0.216

Scaffold-GS [21] not applicable 23.96 / 0.853 / 0.177 not applicable 30.21 / 0.906 / 0.254 not applicable 27.50 / 0.806 / 0.252

3D-MCMC [17] 1,750,000 24.65 / 0.868 / 0.154 2,750,000 29.48 / 0.908 / 0.252 3,277,778 27.97 / 0.834 / 0.191

Table 4.1: Comparison of 3D-GS [15] against 3D-MCMC [17]. We evaluate both 3D-GS and 3D-MCMC
on Tanks & Temples [19], DeepBlending [12], and Mip-NeRF 360 [2] scenes in order to devise a base
Gaussian optimization method. As comparison reveals superiority of 3D-MCMC with negligible overhead
during training, we continue with 3D-MCMC in order to compress 3D Gaussian primitives. For evaluation
of both methods, the public repositories of 3D-GS and 3D-MCMC are utilized without change in function-
ality to reproduce the results. For Scaffold-GS, the experiment results are taken as reported [21]. Note that
our evaluation involves treehill and flowers in contrast to reported results in 3D-GS [15] and 3D-MCMC
[17].

According to our experiments on Tanks & Temples [19], DeepBlending [12], and Mip-NeRF 360 [2], we
confirmed that 3D-MCMC generally appears to be superior compared to 3D-GS. Although superiority is
evident in Tanks & Temples [19] and Mip-NeRF 360 [2], 3D-GS performs slightly better in DeepBlending
[12]. This result is also confirmed by the results reported by 3D-MCMC [17]. Furthermore, noting samples
from Figure 4.1, the noise term and exploration with 3D-MCMC clearly help in terms of improving quality
at convoluted regions, while 3D-GS appears blurry in most difficult regions when initialization is not par-
ticularly helpful. Some examples of such regions on scenes are from mountain parts of the train scene and
flowers in the flowers scene. As a result of the quantitative comparison based on Table 4.1 and qualitative
comparisons on Figure 4.1, our primary choice is to continue taking 3D-MCMC [17] as a base for the rest
of compression evaluations.

4.3 3D Gaussian Splatting Primitive Pruning

The second stage towards compressing 3D Gaussian primitives is pruning the primitives so that redundancy
in number of parameters is reduced with fewer primitives. This stage is essential as 3D-GS is known
to be highly redundant in optimization process even when modified with 3D-MCMC algorithm. Thus, an
effective yet efficient pruning method is adopted by comparing learnable masking of 3D Gaussian primitives
[20] against the importance based pruning method proposed with RadSplat [27] in Table 4.2.
For the training and evaluation of Gaussian primitives with learned masking and RadSplat pruning methods,
we train the Gaussian primitives from scratch for 30K iterations, same as the case without these additional
pruning methods. All other training hyperparameters are kept same as in 3D-MCMC [17] for fair evaluation.
In addition, we apply RadSplat pruning at iterations 16K, and 24K same as proposed in RadSplat [27] with
a threshold of 0.01. For the learned masking, we apply the masking on 3D-MCMC [17] with a masking
threshold of 0.01 and a learning rate of 0.001 for the learned mask parameters. Furthermore, we prune
the Gaussian primitives once in every 1, 000 iterations and continue pruning primitives even after 15, 000
iterations which is different from 3D-GS and 3D-MCMC without learned masking.
To compare both methods and see their similarity, we first compare the density of Gaussian primitives in
important regions of train scene from Tanks & Temples [19] in Figure 4.2. To understand whether learned
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Figure 4.1: Qualitative comparison of 3D-GS [15] against 3D-MCMC [17]. The qualitative results on
train, bicycle, flowers, and treehill scenes. As per seen from crops on rasterized images, 3D-MCMC yields
superior visual quality over 3D-GS.

masking and RadSplat pruning pay importance to similar regions, we plot a histogram for the count of
Gaussian primitive positions falling into the same 3D bins. For that purpose, we look at most important
where majority of primitives reside. As can be seen in Figure 4.2, both methods have very similar frequency
histograms for the number of Gaussian primitives falling into same bins. For that reason, we can deduce
that although RadSplat pruning has external guidance through maximum image contribution formulation,
learned masking also learns a similar feature (scalar) which denotes the importance of a Gaussian for all
training images.
Based on the results on Table 4.2 and more detailed view of experiments in Appendix A, application of
RadSplat pruning method appears slighly better compared to applying learned masking in overall. Although
the results are similar in terms of PSNR, SSIM, and LPIPS metrics, RadSplat pruning method is relatively
simpler as it needs to be applied only twice during training. In addition, RadSplat pruning is agnostic to
number of views since it requires taking max of primitive contribution over all views and it allows for use
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Figure 4.2: Gaussian primitive position histogram comparison of learned masking and RadSplat prun-
ing on train scene from Tanks & Temples [19] dataset. We draw histograms of Gaussian primitive posi-
tions along each dimension. Specifically, we take the 0.2 × σ range for each dimension around the mean
position to reduce the sample size for histogram. We observe that both RadSplat pruning [27] and learned
masking [20] achieve similar distributions for Gaussian primitives.

Tanks&Temples DeepBlending Mip-NeRF 360

Method # Gaussians PSNR / SSIM / LPIPS # Gaussians PSNR / SSIM / LPIPS # Gaussians PSNR / SSIM / LPIPS

3D-MCMC 1,750,000 24.65 / 0.868 / 0.154 2,750,000 29.48 / 0.908 / 0.252 3,277,778 27.97 / 0.834 / 0.191

with Masking 856,210 24.60 / 0.868 / 0.154 624,490 29.26 / 0.906 / 0.254 2,170,155 27.98 / 0.835 / 0.192

with Pruning 788,980 24.61 / 0.867 / 0.157 505,365 29.33 / 0.905 / 0.256 2,058,623 27.99 / 0.835 / 0.192

Table 4.2: Comparison of learned masking against RadSplat pruning method on 3D-MCMC. We eval-
uate two different pruning methods, namely learned masking proposed in [20] and importance-aware prun-
ing method proposed in [27]. Pruning is an important step of Gaussian splatting compression since the
redundancy in number of Gaussians should be first reduced through lowering number of Gaussians. The
comparison reveals slightly better results with pruning method proposed with RadSplat in given two scenes.

of relatively fewer Gaussians for all scenes. Therefore, based on general consensus and reduced number
of Gaussians with RadSplat pruning method, our choice for further analysis and compression of Gaussian
Splatting will utilize RadSplat pruning for reducing the redundancy in scene representation with Gaussian
Splatting.
In addition, note that a lower number of Gaussian primitives is also beneficial in terms of rasterization speed.
For a simple yet important comparison, the regular 3D-MCMC model with 3, 700, 000 Gaussian primitives
is capable of rasterizing 85 frames per second while its counterpart with 103 FPS after RadSplat pruning
method is applied to reduce the number of Gaussian primitives to 2, 426, 631. The reported values are
acquired when rasterizing on single NVIDIA RTX A6000.
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4.4 Gaussian Primitive Compression using Learned Entropy Models

For compression of Gaussian primitives, our trials mainly focused on compressing attributes of Gaussian
primitives without complex analysis and synthesis transforms which are described in Section 3.4. For the
rest of this chapter, the experiments with fully-factorized entropy model, mean-scale hyperprior entropy
model, and hierarchical structure will be presented. In addition, the application of multi-rate compression
models for Gaussian primitives will be presented.
For our experiments in this section, we refer to hierarchical entropy model as “mean-scale hyperprior”
model as it includes a hyperprior network to estimate the entropy parameters, mean and standard deviation
(scale). As for our entropy model learning rates, we always use a learning rate of 0.01 both for the entropy
model parameters, and also for the auxiliary parameters of fully-factorized model to calculate quantiles. For
entropy model training, we tested three different cases:

1. Training and comparing fully-factorized and mean-scale hyperprior (hierarchical) entropy models,

2. Training the entropy model for 5K iterations after optimizing Gaussian primitives 25K iterations
against training the entropy model for 10K iterations after optimizing Gaussian primitives 30K iter-
ations,

3. Training the entropy model with and without optimizing geometry (position, scaling, rotation),

4. Training multi-rate compression model against training separate models for different bitrates.

4.4.1 Fully-Factorized and Mean-Scale Hyperprior Entropy Models

In this subsection, we compare the fully-factorized entropy model with mean-scale hyperprior to compare in
terms of rate-distortion optimization. For the experiments, we optimize Gaussian primitives for 30K itera-
tions with 3D-MCMC [17] algorithm and then introduce entropy models in order to compress the Gaussian
primitives. Furthermore, we keep optimizing the geometry related attributes of Gaussians, i.e., the position,
scaling, and rotation attributes for compressed Gaussian primitives. The results acquired for our tests can be
visualized in Table 4.3 and rate-distortion curves displayed in Figure 4.3.

Mip-NeRF360 [3] Tanks&Temples [16] DeepBlending [14]
PSNR↑ SSIM↑ LPIPS↓ Size↓ PSNR SSIM↑ LPIPS↓ Size↓ PSNR↑ SSIM↑ LPIPS↓ Size↓

Fully-Factorized (λ = 0.005) 25.46 0.778 0.251 25.16 23.02 0.822 0.204 9.27 26.67 0.875 0.304 5.13

Mean-Scale Hyperprior (λ = 0.005) 25.61 0.781 0.248 25.16 23.09 0.824 0.203 9.21 26.82 0.876 0.303 5.13

Fully-Factorized (λ = 0.001) 26.84 0.809 0.219 39.97 24.06 0.848 0.178 13.99 27.73 0.888 0.285 7.72

Mean-Scale Hyperprior (λ = 0.001) 26.95 0.810 0.218 38.82 24.08 0.849 0.176 13.79 27.76 0.889 0.283 7.58

Fully-Factorized (λ = 0.0001) 27.53 0.823 0.201 63.71 24.33 0.860 0.164 23.11 28.15 0.893 0.276 13.13

Mean-Scale Hyperprior (λ = 0.0001) 27.54 0.823 0.201 61.27 24.35 0.860 0.164 22.02 28.17 0.893 0.275 12.57

Table 4.3: The quantitative compression results obtained from the proposed entropy models when
trained for 10K iterations after 30K iterations of optimization for Gaussian primitives. We compare
the results with fully-factorized and mean-scale hyperprior entropy models to deduce which appears supe-
rior. As a result, mean-scale hyperprior has slightly better compression ratios with very similar performance.

Note that the size of a scene in 4.3 includes three parts: 1) Compressed Gaussian primitive parameters
except position, 2) Entropy model parameters, 3) Gaussian primitive position parameters. We compress
the Gaussian primitive position separately because of the high sensitivity of Gaussian primitives to noise.
This is a recurring theme observed in other models [20, 10, 26] as well. Based on our comparison between
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fully-factorized and mean-scale hyperprior entropy models, it is evident that mean-scale hyperprior achieves
superior compression performance by a small margin against fully-factorized entropy model. In almost all
scenes of provided datasets, mean-scale hyperprior requires smaller memory while acquiring a slightly better
visual quality. This result is sensible with the main motivation for the derivation of mean-scale hyperprior
entropy model: As the entropy model allows for providing additional information regarding the distribution
of Gaussian primitive attributes, it achieves a more efficient entropy coding, resulting in a higher efficiency
in terms of bitrate and visual quality.

Figure 4.3: Rate-Distortion Curve for fully-factorized and Meanscale-Hyperprior entropy models. For
both fully-factorized and mean-scale hyperprior entropy models, we first optimize the Gaussian primitives
for 30K iterations and then train the respective entropy model for 10K iterations. During the training, we
continue optimizing all Gaussian attributes.

For that reason, we continue our experiments only with mean-scale hyperprior entropy model rather than
fully-factorized entropy model.

4.4.2 Entropy Penalization Start Iteration and Training Duration

Secondly, we inspect the effect of training duration and reducing the computational complexity of training.
For generalizable compression networks in image/video compression literature, a longer training duration
on multiple images/videos is required. However, since we are overfitting a compression model on a sin-
gle scene, training the entropy model for a shorter duration might suffice. For that reason, we repeat our
experiments to train the entropy model for 5K iterations after optimizing the Gaussian primitives for 25K
iterations using the 3D-MCMC algorithm.
Repeating the experiments for training 5K iterations after optimizing Gaussian primitives for 25K itera-
tions, we observe that the change in quantitative results is not vast and a similar visual quality is achieved
even with 5K iterations instead of 10K iterations. Since we are in an overfitting setting, this result is un-
derstandable. Having a single scene per training is less demanding in terms of optimization compared to
generalization setting.
Thus, after investigating Table 4.4, we opt for training entropy model for only 5K iterations after opti-
mizing the Gaussian primitives for 25K iterations over the training entropy model for 10K iterations after
optimizing the Gaussian primitives for 30K iterations. The reason behind our choice is the reduced training
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Mip-NeRF360 [3] Tanks&Temples [16] DeepBlending [14]
PSNR↑ SSIM↑ LPIPS Size↓ PSNR SSIM↑ LPIPS↓ Size↓ PSNR↑ SSIM↑ LPIPS↓ Size↓

5
K

af
te

r2
5
K

Fully-Factorized (λ = 0.005) 25.40 0.778 0.251 24.88 22.91 0.822 0.206 9.22 26.62 0.876 0.302 5.17

Mean-Scale Hyperprior (λ = 0.005) 25.54 0.781 0.248 24.12 23.00 0.824 0.204 9.09 26.67 0.876 0.303 5.17

Fully-Factorized (λ = 0.001) 26.67 0.809 0.219 38.60 23.96 0.848 0.179 13.71 27.73 0.890 0.281 7.50

Mean-Scale Hyperprior (λ = 0.001) 26.89 0.810 0.218 37.38 24.01 0.848 0.178 13.36 27.78 0.891 0.281 7.28

Fully-Factorized (λ = 0.0001) 27.50 0.823 0.202 58.75 24.32 0.859 0.166 22.86 28.31 0.895 0.272 12.70

Mean-Scale Hyperprior (λ = 0.0001) 27.50 0.823 0.202 54.15 24.32 0.859 0.166 20.80 28.30 0.896 0.272 11.69

1
0
K

af
te

r3
0
K

Fully-Factorized (λ = 0.005) 25.46 0.778 0.251 25.16 23.02 0.822 0.204 9.27 26.67 0.875 0.304 5.13

Mean-Scale Hyperprior (λ = 0.005) 25.61 0.781 0.248 25.16 23.09 0.824 0.203 9.21 26.82 0.876 0.303 5.13

Fully-Factorized (λ = 0.001) 26.84 0.809 0.219 39.97 24.06 0.848 0.178 13.99 27.73 0.888 0.285 7.72

Mean-Scale Hyperprior (λ = 0.001) 26.95 0.810 0.218 38.82 24.08 0.849 0.176 13.79 27.76 0.889 0.283 7.58

Fully-Factorized (λ = 0.0001) 27.53 0.823 0.201 63.71 24.33 0.860 0.164 23.11 28.15 0.893 0.276 13.13

Mean-Scale Hyperprior (λ = 0.0001) 27.54 0.823 0.201 61.27 24.35 0.860 0.164 22.02 28.17 0.893 0.275 12.57

Table 4.4: The quantitative compression results obtained from the proposed entropy models when
trained for 5K iterations against 10K iterations with varying Gaussian primitive optimization du-
rations. As training for 10K iterations is computationally demanding compared to training for an overall
30K iterations, we test having a total training time of 30K iterations where last 5K iterations are utilized for
entropy model training. As a result, the improvement with training for an additional 10K iterations remains
negligible.

complexity while achieving almost same results without any degradation due to reduced number of training
iterations.

4.4.3 Freezing Geometry Parameters

During the training of entropy models, one can have two different approaches: 1) Continuing optimizing
Gaussian primitive geometry attributes, 2) Only training the entropy model and appearance attributes (i.e.,
opacity and spherical harmonics). This choice is born from the fact that the Gaussian primitives are more
sensitive to deviations in geometry attributes such as position, scaling, and rotation when compared with
appearance attributes such as opacity, and spherical harmonics. To test this hypothesis, we repeat our exper-
iments with mean-scale hyperprior entropy model with and without optimizing the geometry attributes.

Mip-NeRF360 [3] Tanks&Temples [16] DeepBlending [14]
PSNR↑ SSIM↑ LPIPS Size↓ PSNR SSIM↑ LPIPS↓ Size↓ PSNR↑ SSIM↑ LPIPS↓ Size↓

O
pt

im
iz

e
ge

om
et

ry Mean-Scale Hyperprior (λ = 0.005) 25.54 0.781 0.248 24.12 23.00 0.824 0.204 9.09 26.67 0.876 0.303 5.17

Mean-Scale Hyperprior (λ = 0.001) 26.89 0.810 0.218 37.38 24.01 0.848 0.178 13.36 27.78 0.891 0.281 7.28

Mean-Scale Hyperprior (λ = 0.0001) 27.50 0.823 0.202 54.15 24.32 0.859 0.166 20.80 28.30 0.896 0.272 11.69

Fr
oz

en
ge

om
et

ry Mean-Scale Hyperprior (λ = 0.005) 25.73 0.795 0.234 25.83 23.35 0.834 0.194 9.71 27.23 0.885 0.287 5.80

Mean-Scale Hyperprior (λ = 0.001) 27.28 0.824 0.206 38.45 24.38 0.858 0.169 13.74 28.38 0.900 0.267 7.69

Mean-Scale Hyperprior (λ = 0.0001) 28.01 0.834 0.193 59.69 24.73 0.866 0.159 21.35 28.82 0.903 0.260 11.37

Table 4.5: The quantitative compression results obtained from mean-scale hyperprior entropy model
when optimization for geometry attributes continues against the case when they are fixed. Mean-scale
hyperprior entropy model is evaluated when it is trained for 5K iterations after optimizing the Gaussian
primitives for 25K iterations. We compare the cases where geometry attributes are further optimized against
the case when they are no longer optimized after 25K iterations.

As a result of our experiments, we gathered quantitative results for scene sizes and visual qualities in Table
4.5 and Figure 4.4 for the rate-distortion performance. Specifically observing Figure 4.4, it becomes evident
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that rate-distortion loss hurts the visual quality significantly compared to jointly optimizing the geometry
attributes. For that reason, our choice for training the entropy model is to train it without optimizing the
geometry attributes.

Figure 4.4: Rate-distortion comparison of training mean-scale hyperprior entropy model with and
without optimizing the Gaussian geometry attributes. We train the entropy model for 5K iterations after
optimizing Gaussian primiitves for 25K iterations. As a result, we deduce that Gaussian geometry attributes
are more prone to noise and should not be optimized.

At this point, a comparison with other works [10, 20, 26, 6, 35] is beneficial to observe where our compres-
sion approach falls in Table 4.6 and Figure 4.5.

Mip-NeRF360 [3] Tanks&Temples [16] DeepBlending [14]
PSNR↑ SSIM↑ LPIPS Size↓ PSNR SSIM↑ LPIPS↓ Size↓ PSNR↑ SSIM↑ LPIPS↓ Size↓

3DGS [15] (SIGGRAPH’23) 27.49 0.813 0.222 744.7 23.69 0.844 0.178 431.0 29.42 0.899 0.247 663.9

Scaffold-GS [21] (CVPR’24) 27.50 0.806 0.252 253.9 23.96 0.853 0.177 86.50 30.21 0.906 0.254 66.00

LightGaussian [10] 27.00 0.799 0.249 44.54 22.83 0.822 0.242 22.43 27.01 0.872 0.308 33.94

Compact3DGS [20] (CVPR’24) 27.08 0.798 0.247 48.80 23.32 0.831 0.201 39.43 29.79 0.901 0.258 43.21

Compressed3D [26] (CVPR’24) 26.98 0.801 0.238 28.90 23.32 0.832 0.194 17.28 29.38 0.898 0.253 25.30

HAC [6] 27.53 0.807 0.238 15.26 24.04 0.846 0.187 8.10 29.98 0.902 0.269 4.35

Context-GS [35] 27.75 0.811 0.231 18.41 24.29 0.855 0.176 11.80 30.39 0.909 0.258 6.60

Ours (λ = 0.005) 25.73 0.795 0.234 25.83 23.35 0.834 0.194 9.71 27.23 0.885 0.287 5.80

Ours (λ = 0.001) 27.28 0.824 0.206 38.45 24.38 0.858 0.169 13.74 28.38 0.900 0.267 7.69

Ours (λ = 0.0001) 28.01 0.834 0.193 59.69 24.73 0.866 0.159 21.35 28.82 0.903 0.260 11.37

Table 4.6: The quantitative compression results obtained from the proposed entropy models and other
works in the literature. 3D-GS [15] and Scaffold-GS [21] are non-compressed Gaussian splatting results
included for reference. The results of other works are obtained from Context-GS [35]. Compared with
other works in the literature, our approach with fully-factorized and mean-scale hyperprior entropy models
achieves competitive results.

Compared with other works, our model with mean-scale hyperprior entropy model trained for 5K iterations
after optimizing all Gaussian attributes for 25K iterations achieves competitive results. In the Mip-NeRF
360 dataset, our model only performs worse compared to HAC [6] and Context-GS [35] which employ
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context models for compression and use Scaffold-GS [21] as a base Gaussian splatting method. For that
reason, their method is not applicable to the generally adopted Gaussian splatting framework. In contrast,
our approach performs better than other works that employ more general-case Gaussian splatting approaches
such as LightGaussian [10], Compact3DGS [20], and Compressed3D [26]. This is a recurring theme on
Tanks & Temples as well. Although it is difficult to compare our approach on DeepBlending, since our
method achieves a higher compression rate with a higher quality drop, it is evident that our compression
approach remains competitive against them.

Figure 4.5: Comparison of mean-scale hyperprior network against other works in the literature.
Our method achieves competitive results compared to LightGaussian [10], Compact3DGS [20] and Com-
pressed3D [26] while achieving inferior results compared to HAC [6] and Context-GS [35].

As an important additional point, note that our compression approach is suitable as a post-training method
for mainstream Gaussian splatting frameworks where Gaussians are composed of same attributes. As a
result, our method is applicable to many cases where users can choose their desired use-case from low
bandwidth to high visual quality.

4.4.4 Position Compression using DEFLATE and G-PCC

Although the compression of Gaussian primitive attributes except the Gaussian position (mean) has been
handled by the learned entropy models so far, the position information was excluded from compression until
now. The reason behind this choice was the fact that the Gaussian position information is highly sensitive
to noise, and additional noise on position significantly degrades the visual quality. For that purpose, other
works in the literature such as [26, 10] utilize the DEFLATE [9] algorithm for the compression of position
information.
Similarly, our approach so far has been utilizing the DEFLATE algorithm. As a first step to compress the
position information, we reduce the precision of the floating point from single precision (float32) to half
precision (float16). Afterwards, we employ DEFLATE algorithm to reduce the size of position information.
On the other hand, G-PCC [22] is a highly influential algorithm developed by MPEG for point cloud com-
pression. Although Gaussian primitives have significantly different attributes compared to point cloud data
which only has color and position attributes, the G-PCC algorithm can be utilized for compression of posi-
tion information solely. For that purpose, we compare the use of the TMC13 algorithm, which is the position
compression component of the G-PCC algorithm for Gaussian primitive position compression, against the
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DEFLATE algorithm. Although our experiments are not matured into a complete algorithm, we evaluated
the short-comings of both methods and compared the compression efficiency. For our comparisons, we
report our results on Tanks & Temples [19] dataset in Table 4.7.

Method Scene # Gaussians Encode Duration Decode Duration Size

DEFLATE [9]
Train 564,884 0.195 0.001 3.03

Truck 1,013,077 0.252 0.001 5.50

TMC13 [22]
Train 564,884 7.63 + 34.92 5.59 0.78

Truck 1,013,077 13.79 + 125.42 10.08 1.72

Table 4.7: Comparison of DEFLATE and TMC13 position compression algorithms on Tanks & Tem-
ples [19] dataset. We compare DEFLATE [9] and TMC13 [22] compression algorithms for position com-
pression. For our method, we found that DEFLATE algorithm is preferable due to undesired permutation
performed by TMC13 during encoding. Since TMC13 permutes Gaussian primitive orders, we need to
match Gaussian primitive orders in an ad-hoc manner, causing an increase in encode time depicted in red.

When utilizing DEFLATE algorithm for position compression, the algorithm is considerably faster com-
pared to TMC13 algorithm, even though TMC13 yields a lower memory requirement. One reason for the
slower encode speed of TMC13 is the permutation of Gaussian primitives’ order during encoding. In order
to have matching orders for positions and attributes of Gaussians, we find the closest points in pre-encoded
and post-encoded positions to perform the same permutation on attributes as well. For that reason, the en-
code duration increases significantly. Although this increase can be alleviated with a more parallelized and
complex method, the encode duration even without post-permutation is significantly higher, forcing us to
continue with DEFLATE algorithm.

Figure 4.6: The size distribution of compressed Gaussian splat representations with DEFLATE algo-
rithm. Using DEFLATE algorithm, we evaluate the size distribution of Gaussian primitives, decomposed
into entropy model parameters, Gaussian primitive positions, and Gaussian primitive attributes. Our evalu-
ation captures only Tanks & Temples since results are only scaled with respect to number of Gaussians for
other datasets.
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Further investigating Figure 4.6, it shows that position information captures a significant portion of the
memory requirement. For that reason, further investigation and more caution is required for the compression
of position information jointly with Gaussian primitive attributes. However, for our concerns, DEFLATE
algorithm has been a simple yet effective compression algorithm alleviating the high sensitivity of Gaussian
position information.

4.4.5 Multi-rate Gaussian Primitive Compression

During all our experiments, we treat the quantization steps as learnable parameters encapsulated by param-
eter s in the analysis and synthesis transforms depicted in Figure 3.3.
The quantization steps are scaled up and down with respect to the rate-distortion (RD) trade-off parameter,
λ, in the loss function, L = D(x̂, x) + λR. Due to the fact that we are using single RD trade-off parameter
in all previous experiments, we required to train a different model for each RD point. To alleviate this
problem and improve parameter-efficiency, we propose utilizing the “gain units” proposed by Cui et al. [8]
as described in Section 3.4.3. Specifically, instead of training for a single RD trade-off parameter, λ, we take
a list of parameters, λ = { 0.005, 0.001, 0.0005, 0.0001 } and associate each with a different learnable
scaling vector, S = { s0, s1, s2, s3 }.
To run our training and optimize for all RD trade-off parameters, we sample a random RD trade-off param-
eter, λ′ at each iteration, and optimize for the chosen RD trade-off parameter and its scaling vector, s′ using
loss, L = D(x̂, x)+λ′R. At each iteration, we element-wise multiply Gaussian attributes with the selected
scaling vector for the analysis transform, and re-scale for the synthesis transform using the multiplicative
inverse of the same scaling vector.

Figure 4.7: Rate-distortion curves for multi-rate entropy model against training the entropy model
separately for each rate-distortion parameter. Rate-distortion performance of entropy model slightly
falls when multi-rate training is performed.

Note that intermediate RD trade-off points can be achieved at test time by performing exponential interpo-
lation on scaling parameters as explained in Section 3.4.3 which can be seen in Figure 4.7. In mentioned
figure, every second RD point is obtained by performing exponential interpolation which does not corre-
spond to a learned scaling vector but the interpolated version of two closest scaling vectors.
The rate-distortion performance of multi-rate training against single-rate training is compared in Figure
4.7. Based on the comparison on all datasets, it is evident that there is a degradation in rate-distortion

35



CHAPTER 4. EXPERIMENTS AND RESULTS

performance. Even though the visual quality degrades slightly at lower bitrates, the gap widens at higher
bitrates and becomes significant. For instance, the results on Mip-NeRF 360 [2] dataset reveals that the gap
is around 16MB at highest bitrate. On the other hand, the gap at lowest bitrate on same dataset is relatively
little at around 2 MB. However, the results are promising in terms of lower than expected degradation and
an impressive generalization among different bitrates for entropy models given the fact that training of the
entropy model took only 5, 000 iterations. Despite the promising results, we continue our analysis with our
best-performing models that are achieved by training one model per each RD trade-off parameter.

4.4.6 Learned Quantization and Attribute Importance

During all of our experiments, we treat the quantization steps as learnable parameters encapsulated by
the parameter s in the analysis and synthesis transforms depicted in Figure 3.3. Since the quantization
step adjusts the amount of noise injected in the respective Gaussian attribute, the scaling parameter s can
be treated as an indicator of attribute importance for Gaussian splatting, where a larger scaling value for
the attribute (si) would be expected to indicate higher importance, while a lower scaling value would be
expected to indicate lower importance. Note that a lower scaling parameter results in larger distortion when
quantization is applied, while a larger scaling parameter yields a higher bitrate.
In the light of this hypothesis and expectation, Figure 4.8 reveals which attributes are more important based
on the optimization process. In Figure 4.8, the mean absolute value of each Gaussian primitive attribute is
drawn with a bar. Accordingly, there exists 16 bars for spherical harmonics since we utilize degree 3 for them
where degree 0 corresponds to base color without any view-dependency and other coefficients represent
view-dependent color properties. In addition, the attributes have 3 scaling coefficients for 3 dimensions, 4
rotation coefficients for quaternions, and 1 opacity attribute.
Observing three subplots in Figure 4.8 for each RD trade-off parameter λ ∈ { 0.005, 0.001, 0.0001 }, one
common theme reveals that scaling parameters are highly important compared to all other attributes since
the optimization process forces them to be less affected by the quantization noise while other attributes are
allowed to be more affected from quantization. On the other hand, another important observation is that
spherical harmonic coefficients are relatively unimportant except for the base-degree coefficient. This result
reveals the fact that most Gaussian primitives do not require view-dependent color as they collapse to value
0 during quantization anyways. Finally, note that the first coefficient of the rotation vector (quaternions) is
deemed to be more important compared to other coefficients. This result is logical in the sense that the 0 -th
coefficient is the real part of the quaternion and represents the angle of rotation.
As a result, our findings show that taking the scale magnitude as an attribute importance metric for Gaussian
primitives, Gaussian scaling parameters are the most important parameters, followed by rotation, opacity,
and spherical harmonics. In this comparison, position attributes are disregarded as we observed that they are
highly prone to quantization noise when compared with other attributes.
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Figure 4.8: Effect of learned scaling on Gaussian primitive attributes and quantization on Tanks &
Temples dataset [19]. Each bar represents the mean value of one attribute of Gaussian primitives. The
standard deviation is visualized with black lines per attribute. The spherical harmonics are aggregated for
R, G, B color channels to have 16 attributes instead of 16× 3 = 48.
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4.5 Hierarchy Generation for 3D Gaussian Primitives

To perform residual coding and aim achieving a reduced entropy for residual Gaussian attributes, the utiliza-
tion of additional compression techniques is required. For that reason, we experiment using the hierarchy
generation idea from [16] to perform residual coding as described in Section 3.5.3.

4.5.1 Effect of Depth Selection

In order to compress all Gaussian primitives, we draw inspiration from low-delay video compression and
utilize intermediate nodes of the Octree structure as prior information for actual Gaussian primitives in the
manner described in Section 3.5. Although the duration of the hierarchy generation with octree structure
depends on the number of Gaussians, the duration for ∼ 600K Gaussian primitives on train scene from
Tanks & Temples [19] dataset is approximately 10 milliseconds.
The octree structure has exponentially increasing number of nodes at each depth up until the actual number
of Gaussian primitives as depicted in Figure 4.9. To choose a depth level for prior information, which
has relatively few nodes for the prior information and forms a representative prediction of actual Gaussian
primitives, we use Equation 3.40. Note that, the number of Gaussians that are required to be encoded and
decoded are much fewer at lower depth levels.

Figure 4.9: Histogram for the increase in number of Gaussian primitives with increasing depth level
in octree structure for bicycle scene from Mip-NeRF 360. Coding of predicted Gaussians (intermediate
nodes) enforces a trade-off between representativeness of intermediate nodes and number of intermediate
nodes. For given scene, we utilize depth 20 as predictions for actual Gaussians, encoding 1/3 of primitives
as predictions.

Similarly, for different levels of the octree structure, renderings in Figure 4.10 can be acquired on playroom
scene from DeepBlending [12] dataset. Note that the depth level for playroom scene is very low compared
to larger scenes since playroom is a small scene and our adaptive depth selection method accounts for the
maximum distance of an axis-aligned bounding box as stated in Equation 3.40.
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Figure 4.10: Effect of depth variation on visual quality on playroom scene from DeepBlending [12]. Us-
ing different octree levels results in changing granularity on images. Specifically, close points appear more
blurry while far away points are less affected from averaging of Gaussian primitives due to the resolution.
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4.5.2 Residual Coding for Gaussian Primitives

Before analyzing the results for residual coding as described in Section 3.5.3, we analyze the distribution
change for Gaussian primitive positions and covariance matrices to understand the effect of subtracting
aggregated attributes from actual attributes to acquire residuals.
In Figure 4.11, we observe the change in distribution for Gaussian primitive positions before and after calcu-
lating residuals. As can be seen from the narrowing down of the probability density functions approximated
using kernel density estimation, the entropy coding for position residuals can benefit from residual coding.
While it is challenging to model a broad distribution, such as the distribution for actual positions and ag-
gregated positions, the number of aggregated positions is significantly lower than that for actual positions,
which should allow for lower bitrates.

Figure 4.11: Distribution of Gaussian primitive position, aggregated position, and residual position
attributes. The distribution of position per dimension is acquired using kernel density estimation. Note that
the distribution gets narrower for residual position elements, indicating a lower entropy.

Similar to our approach in previous sections without residual coding, we compress the aggregated positions
using DEFLATE algorithm [9] in order to prevent large distortion in position information due to its sensi-
tivity. For the residual position, we compress them using learned entropy models similar to other attributes.
For that reason, the bitrate consumed by the DEFLATE algorithm is reduced to 1/5-th due to the lowered
number of Gaussians after aggregation, while the residual position brings additional bitrate consumption
which cannot be measured due to joint compression with other attributes.
On the other hand, for the compression of Gaussian primitive covariances either through direct compression
of covariance matrices or compression of scaling and rotation attributes, we visualize the distribution change
with residual calculation in Figure 4.12. Recall from Section 4.4.6, the scaling information is also highly
sensitive to compression. For that reason, correct entropy modeling for Gaussian covariance information is
of great importance. However, observing Figure 4.12, the distribution of residual covariance matrix elements
has a wider distribution compared to aggregated or actual Gaussian primitive covariance matrix elements.
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This result indicates that residual coding while using aggregated Gaussian primitives as predictions might
not be very beneficial in terms of compression efficiency.

Figure 4.12: Distribution of Gaussian primitive, aggregated, and residual covariance matrices. The
distribution of covariance is calculated using kernel density estimation. Note that the distribution of residual
covariance matrix elements gets wider, indicating a larger entropy and higher bitrates for compression.

As explained in Section 3.5.3, a design choice is to compress either the covariance matrix while ensuring
positive semidefiniteness through Cholesky decomposition or compressing scaling and rotation components
after decomposing it usign eigen-decomposition. The comparison of these two approaches for residual
coding, are depicted in Figure 4.13 and Table 4.8.

Figure 4.13: Rate-distortion curve comparison for residual compression with compressing covariance
matrix against compressing scaling and rotation decomposition. Two approaches for compressing co-
variance information yields curves at significantly different bitrates despite using same hyperparameters.
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Mip-NeRF360 [3] Tanks&Temples [16] DeepBlending [14]
PSNR↑ SSIM↑ LPIPS Size↓ PSNR SSIM↑ LPIPS↓ Size↓ PSNR↑ SSIM↑ LPIPS↓ Size↓
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ck Compress Scaling/Rotation (λ = 0.005) 25.73 0.795 0.234 25.83 23.35 0.834 0.194 9.71 27.23 0.885 0.287 5.80

Compress Scaling/Rotation (λ = 0.001) 27.28 0.824 0.206 38.45 24.38 0.858 0.169 13.74 28.38 0.900 0.267 7.69

Compress Scaling/Rotation (λ = 0.0001) 28.01 0.834 0.193 59.69 24.73 0.866 0.159 21.35 28.82 0.903 0.260 11.37
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Compress Covariance (λ = 0.005) 21.71 0.681 0.406 5.17 21.78 0.761 0.280 11.52 24.44 0.810 0.366 5.36

Compress Covariance (λ = 0.001) 23.18 0.751 0.372 8.73 22.37 0.781 0.261 17.17 25.47 0.836 0.346 7.35

Compress Covariance (λ = 0.0001) 23.68 0.771 0.353 16.08 22.43 0.783 0.259 25.79 25.84 0.843 0.338 10.89

Compress Scaling/Rotation (λ = 0.005) 23.54 0.694 0.307 50.26 23.01 0.824 0.207 23.35 25.51 0.826 0.342 10.17

Compress Scaling/Rotation (λ = 0.001) 26.09 0.791 0.231 62.79 24.07 0.851 0.175 29.09 27.83 0.890 0.276 10.78

Compress Scaling/Rotation (λ = 0.0001) 27.38 0.817 0.206 71.69 24.29 0.857 0.167 33.73 28.53 0.898 0.266 14.76

Table 4.8: Comparison of residual coding methods and single bottleneck compression. We compare
residual coding either with compressing covariance or scaling and rotation components. Single bottleneck
model is the previously reported mean-scale hyperprior network without optimizing the geometry attributes
during entropy model training.

In both cases where compressing either covariance matrix or the scaling and rotation attributes, the com-
pression of residuals together with aggregated Gaussians work significantly worse than compressing actual
Gaussian attributes in a single bottleneck as shown in Table 4.8. Although the reason for this situation is
not crystal clear, the adverse change in the distribution for covariance is a possible explanation of this result.
Since the residual Gaussian attributes do not have a probability distribution that is significantly simpler to
compress, the bitrate is increased due to the increased entropy of residuals and requirement of additional ag-
gregated Gaussian compression. Further evaluating the size distribution born from residual coding in Figure
4.14, we confirm that the residual Gaussian attributes require a significant bitrate which is not conforming
to observations from video compression and frame residuals. For residual compression to be efficient, the
residual attributes need to consume a much lower bitrate.

Figure 4.14: Size distribution for residual compression. Most of the bitrate requirement is first due to the
residuals and then the aggregated Gaussians. This result is in contrast with the expectations based on the
video compression literature as residuals are expected to require small amount of memory.
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Discussion

In this chapter, we interpret and discuss the findings from our experiments on Gaussian splatting, pruning,
and compression utilizing learned entropy models and hierarchical structure. The results discussed here are
drawn from the detailed experiments and evaluations performed in Section 4.

5.1 3D Gaussian Splatting Optimization Improvement

The comparison between 3D-MCMC [17] and the seminal 3D-GS [15] method shows that 3D-MCMC
offers superior visual quality without increasing the number of Gaussian primitives. This improvement is
particularly evident in complex regions of the scenes where 3D-GS tends to produce blurry results. The
main difference between 3D-GS and 3D-MCMC is the optimization algorithm without changing the general
framework. Thus, using 3D-MCMC is a costless improvement while remaining in sync with generally
adopted Gaussian primitive properties. Quantitative and qualitative analysis, as demonstrated in Table 4.1
and Figure 4.1, confirm the superiority of 3D-MCMC. Since higher visual quality from Gaussian primitives
directly translates into better rate-distortion performance, our choice to use it as a baseline for learned
entropy modeling is justified.
Compared to Scaffold-GS [21], 3D-MCMC generally achieves higher quality while following a framework
similar to 3D-GS. However, both 3D-GS and Scaffold-GS outperform 3D-MCMC in the DeepBlending [12]
dataset. This result aligns with the results reported by 3D-MCMC [17]. On the other hand, Scaffold-GS
employs a significantly different Gaussian Splatting framework with anchor primitives and neural Gaussians.
Thus, the Scaffold-GS framework does not align well with many applications that are adopted by a large
portion of end-users. For that reason, employing 3D-MCMC is a more reasonable approach from both the
perspective of visual quality and adoption.

5.2 3D Gaussian Splatting Primitive Pruning

Our experiments with learned masking [20] and RadSplat pruning [27] methods revealed that both ap-
proaches are effective in reducing the number of Gaussian primitives while maintaining visual quality. The
RadSplat method showed a slight edge over the learned masking in terms of simplicity and effectiveness,
as seen in Table 4.2. By applying the pruning only twice throughout training and being invariant to num-
ber of training views, RadSplat pruning appears as a simpler pruning method compared to learned masking
which requires learning one additional mask parameter for each Gaussian primitive and applying pruning
throughout whole training.
Inspecting Figure 4.2, it is reassuring to see that the distribution of Gaussian primitives is highly overlapping
in terms of position for both learned masking and RadSplat pruning. This result confirms the redundancy of
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the primitive Gaussian optimization methods and that both approaches target similar redundant Gaussians.
Furthermore, having a reduction in the number of Gaussians not only reduces the memory requirements but
also improves the rasterization speed, making it more practical for real-time applications.

5.3 Gaussian Primitive Compression using Learned Entropy Models

Fully-factorized and mean-scale hyperprior entropy models demonstrated significant compression capabil-
ities, while the mean-scale hyperprior model consistently outperformed the fully-factorized model in com-
pression rates and visual quality, as indicated in Table 4.3 and Figure 4.3. Training the entropy model for
5K iterations after optimizing Gaussian primitives for 25K iterations proved to be computationally effi-
cient without compromising performance significantly, as shown in Table 4.4. This result is intuitive when
considering the overfitting setting of our entropy models. Despite the increased compression efficiency of
learned entropy models in generalizable image compression domain with increased training duration, such
long training duration appears redundant for our single scene setting. Although longer training of the entropy
model improves rate-distortion performance, it increases computational cost and training time as expected.
Furthermore, optimizing geometry attributes with entropy penalty negatively affects performance due to
their sensitivity. Therefore, keeping the geometry attributes fixed significantly improves rate-distortion per-
formance.

5.3.1 Position Compression

For the compression of Gaussian primitive positions, our experiments show that the position information is
more sensitive to quantization errors. This result is consistent with other works in the literature [10, 26].
Thus, we prefer the DEFLATE algorithm with precision reduction from single-point precision to half-point
precision. DEFLATE algorithm was found to be effective and computation-efficient compared to the TMC13
algorithm due to the permutation performed by TMC13. Although TMC13 provided better compression
ratios, its significant encoding time and the need for post-permutation adjustments made DEFLATE a more
practical choice, as detailed in Table 4.7.
As indicated, many of the works except HAC [6] and Context-GS [35] use the same approach as we preferred
with DEFLATE algorithm. The reason for HAC and Context-GS to not use the same approach is primarily
the significantly different Gaussian splatting framework they use with taking Scaffold-GS as a base for
compression.

5.3.2 Multi-rate Compression

Introducing multi-rate compression using gain units allowed us to achieve multiple rate-distortion trade-offs
with a single model. Although this approach slightly degraded the rate-distortion performance compared
to training separate models for each rate, it offered a more parameter-efficient and flexible solution, as
illustrated in Figure 4.7. Although the multi-rate implementation with multiple scaling parameters and
single entropy model results in a slight degradation, training multiple models for the full rate-distortion
curve remains as primary choice since the training overhead is negligible with learned entropy modeling.
However, multi-rate compression is a promising avenue to follow for future research since results from
image compression display results without degradation while achieving the same compression ratios as
training single model for each rate-distortion trade-off.
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5.3.3 Limitations and Relation to Previous Work

Comparing our approach with previous work depicted in Table 4.6 and Figure 4.5, HAC [6] and Context-GS
[35] appear superior to our model, while our approach with mean-scale hyperprior is competitive against
LightGaussian [10], Compact3DGS [20], and Compressed3D [26]. Our work is concurrent with others due
to the temporal proximity of the 3D Gaussian splatting approach.
Firstly, aligning with the observations of Papantonakis et al. [28], we observe that view-dependent part of
the spherical harmonics are redundant for most cases since the learned importance with scale parameters of
our learned entropy models are very low for the corresponding coefficients. Thus, they are quantized heavily
as it induces negligible cost for visual quality.
When compared with LightGaussian [10], Compact3DGS [20] and Compressed3D [26], their approach
does not require any explicit entropy modeling and rate-distortion optimization. These approaches depend
on clustering and codebook creation from vector quantization, requiring less computation. However, their
approach is significantly more complex with multiple components with ad-hoc methods such as importance
scoring and knowledge distillation. Our method, with a single hyperprior network, achieves either superior
or competitive results on Mip-NeRF 360 [2], Tanks & Temples [19], and DeepBlending [12] datasets.
Among other provided related compression works, HAC [6] and Context-GS [35] also utilize a learned en-
tropy model with a similar approach where they model the Gaussian parameters with a Gaussian distribution.
However, as their approach takes Scaffold-GS as basis, their approach utilizes latent features for Gaussian
primitive attributes which allows a better modeling during optimization. On the other hand, their approach
has a higher computational cost due to the MLPs that are used to decode the latent features into Gaussian
attributes. Furthermore, as the underlying structure with anchor primitives in Scaffold-GS provides an in-
herent context model, both HAC and Context-GS make use of the spatial correlation. Context-GS employs
additional structure with an octree hierarchy among anchor primitives, resulting in even further increase in
compression efficiency with a small cost of computational complexity. On the other hand, since the adoption
for Scaffold-GS framework is low in the literature and among end-users, both methods might lack integra-
tion with actual 3D-GS [15] approach. Our approach, however, can be seamlessly integrated with most
works in literature and industry, as it adopts an additional learned entropy model that can be trained with
regular 3D Gaussian primitives after 25K iterations.
As a result, our approach has a proper balance between computational complexity and bitrate reduction
making it suitable for end-user adoption to reduce the inherent storage complexity of 3D Gaussian splatting.
Furthermore, it can be easily integrated to most preferred 3D Gaussian splatting representation as a post-
optimization algorithm after 25K iterations of Gaussian primitive optimization.
As a final limitation of our work with applying learned entropy modeling for Gaussian primitives, the in-
stant rendering is prevented due to the imposed decoding duration. Although the decoding of the Gaussian
primitives takes around 3 seconds for ∼ 600K Gaussian primitives for the train scene in Tanks & Temples
[19] dataset, this might be still a concern for some applications requiring instant rendering. This problem is
avoided in LightGaussian [10], Compressed3D [26], and Compact3DGS [20] as they do not utilize learned
entropy models. On the other hand, HAC [6] and Context-GS [35] require to spend the same duration for
the decoding process as well.

5.4 Residual Coding for Gaussian Primitive Compression

The results achieved for residual coding were against the expectations as they yield lower compression effi-
ciency and visual quality compared to single bottleneck learned entropy models presented in Section 4.4. We
experimented with compressing the covariance matrix and compressing the scaling and rotation attributes of
Gaussian primitives for inter-predictions; both yielded inferior results compared to single bottleneck entropy
models.
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One possible explanation for this result is the higher entropy of residuals for Gaussian covariance matrices
as observed in Figure 4.12. Although video compression typically requires lower entropy for residuals,
we observe the opposite, likely due to faults in inter-prediction with hierarchical structure and Gaussian
aggregation. Figure 4.14 shows that shows that Gaussian primitive residuals require a large portion of
bitrate, contrary to expectations for residual coding in video compression. This indicates that although
the hierarchical structure proposed in [16] provides decent aggregated Gaussians, they are not predictive
for actual Gaussians. We achieve a lower entropy for residual Gaussian positions as expected, since the
hierarchy generation is based on the Gaussian positions, while other attributes might vary within a set of
Gaussians belonging to the same node.
In an ablation study on compressing either the covariance matrices or the scaling and rotation attributes, we
observe that the two approaches yield significantly different bitrates, with covariance compression yielding
slightly worse compression efficiency. This result can be explained by the differing importance of scaling
and rotation attributes, which are multiplied to calculate covariance matrices. Since scaling attributes usually
have larger value ranges, compressing them separately requires larger bitrates even with the same rate-
distortion parameter λ. Additionally, directly compressing the covariance matrix is susceptible to noise,
causing random rotations for Gaussians, whereas compressing scaling and rotation attributes avoids this
problem. Therefore, we choose to compress the scaling and rotation attributes separately rather than the
covariance matrix.
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Conclusion

In conclusion, our exploration into compressing Gaussian splatting representation through improving opti-
mization framework with Markov Chain Monte Carlo (MCMC), applying primitive pruning, and compress-
ing Gaussian primitives with learned entropy models has yielded promising results. The integration of the
MCMC framework enhances the visual quality of novel view synthesis without increasing the computational
cost significantly, making it a cost-effective improvement over seminal 3D-GS. Additionally, our compar-
ative analysis indicates that although methods like Scaffold-GS can outperform in DeepBlending dataset,
3D-MCMC maintains broader applicability and superior visual quality in general use cases.
Our experiments with pruning techniques, particularly the pruning method proposed by RadSplat, demon-
strate effective reduction of Gaussian primitives while maintaining visual quality, thereby reducing storage
complexity and improving rasterization speed. The compression of Gaussian primitives using learned en-
tropy models, specifically mean-scale hyperprior models, shows substantial reductions in storage require-
ments while preserving visual quality. This approach, which does not necessitate modifications to the Gaus-
sian primitives, ensures easy adoption and integration into existing deployments.
The multi-rate compression using multiple scale vectors introduced flexibility in achieving various rate-
distortion trade-offs, albeit with a slight degradation in performance compared to training separate models
for each rate. This indicates a potential avenue for future research to balance parameter efficiency and
compression performance.
However, our investigation of residual coding for Gaussian primitive compression reveals limitations. By vi-
sualizing the estimated distribution of Gaussian covariance matrices, we observe a higher entropy in residu-
als, suggesting that more advanced prediction schemes may be necessary to enhance compression efficiency.
The DEFLATE algorithm, with precision reduction, proves to be a more practical choice over TMC13 for
position compression due to its computational efficiency, despite TMC13’s better compression ratios.
Overall, our findings suggest that while significant advancements have been made in optimizing 3D Gaus-
sian splatting for reduced storage complexity and improved visual quality, there remain opportunities for
further research. We note that better prediction schemes and exploration of more sophisticated hierarchical
structures could provide additional gains in storage efficiency.
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Appendix A

Experiment Results of Pruning Methods

This chapter includes training details and extensive results for pruning methods. To apply pruning using
learned masking [20] and RadSplat pruning [27], we follow slightly varying training strategies without
changing the hyperparameters for Gaussian primitive optimization. Only thing that is differing is the pruning
related hyperparameters for two experiments for fair evaluation.

As described in Section 4.3, we use apply RadSplat pruning with importance score threshold 0.01 and
apply RadSplat pruning at every 16K and 24K iterations. For learned masking, we apply masking at every
1000 iterations for the full training until 30K iterations with mask learning rate of 0.01, mask magnitude
penalty λ = 0.001, and mask pruning threshold 0.01.

3D-MCMC with Masking with Pruning

Scene # Gaussians PSNR / SSIM / LPIPS # Gaussians PSNR / SSIM / LPIPS # Gaussians PSNR / SSIM / LPIPS

train 1,000,000 22.80 / 0.838 / 0.190 601,214 22.79 / 0.838 / 0.192 564,884 22.82 / 0.838 / 0.192

truck 2,500,000 26.44 / 0.898 / 0.117 1,111,206 26.41 / 0.899 / 0.117 1,013,077 26.40 / 0.898 / 0.119

average 1,750,000 24.65 / 0.868 / 0.154 856,210 24.60 / 0.868 / 0.154 788,980 24.61 / 0.867 / 0.157

Table A.1: Comparison of learned masking against RadSplat pruning method on 3D-MCMC on Tanks
& Temples [19] scenes.

3D-MCMC with Masking with Pruning

Scene # Gaussians PSNR / SSIM / LPIPS # Gaussians PSNR / SSIM / LPIPS # Gaussians PSNR / SSIM / LPIPS

playroom 2,300,000 30.32 / 0.913 / 0.251 415,697 29.94 / 0.911 / 0.252 355,700 29.90 / 0.906 / 0.255

drjohnson 3,200,000 28.63 / 0.902 / 0.253 833,282 28.57 / 0.902 / 0.255 655,030 28.77 / 0.903 / 0.256

average 2,750,000 29.48 / 0.908 / 0.252 624,490 29.26 / 0.906 / 0.254 505,365 29.33 / 0.905 / 0.256

Table A.2: Comparison of learned masking against RadSplat pruning method on 3D-MCMC on Deep-
Blending [12] scenes. The Gaussian primitives for each method are optimized for 30, 000 iterations.
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3D-MCMC with Masking with Pruning

Scene # Gaussians PSNR / SSIM / LPIPS # Gaussians PSNR / SSIM / LPIPS # Gaussians PSNR / SSIM / LPIPS

bicycle 6,000,000 25.66 / 0.797 / 0.174 3,538,333 25.64 / 0.797 / 0.174 3,205,464 25.69 / 0.797 / 0.174

bonsai 1,200,000 32.54 / 0.947 / 0.195 702,349 32.49 / 0.947 / 0.196 693,450 32.52 / 0.946 / 0.196

counter 1,200,000 29.28 / 0.916 / 0.188 750,779 29.31 / 0.916 / 0.189 739,895 29.27 / 0.915 / 0.190

flowers 3,500,000 21.99 / 0.642 / 0.292 2,686,961 22.02 / 0.643 / 0.292 2,609,128 22.06 / 0.643 / 0.290

garden 5,800,000 27.79 / 0.877 / 0.096 4,346,106 27.77 / 0.877 / 0.096 4,090,208 27.75 / 0.876 / 0.096

kitchen 1,800,000 31.99 / 0.933 / 0.123 1,221,990 31.99 / 0.932 / 0.123 1,197,397 31.99 / 0.932 / 0.123

room 1,500,000 32.13 / 0.928 / 0.203 598,284 32.03 / 0.927 / 0.205 570,579 32.14 / 0.928 / 0.205

stump 4,800,000 27.33 / 0.811 / 0.174 3,150,719 27.46 / 0.812 / 0.173 2,994,861 27.43 / 0.812 / 0.173

treehill 3,700,000 23.05 / 0.660 / 0.277 2,535,880 23.06 / 0.661 / 0.278 2,426,631 23.04 / 0.660 / 0.277

average 3,277,778 27.97 / 0.834 / 0.191 2,170,155 27.98 / 0.835 / 0.192 2,058,623 27.99 / 0.835 / 0.192

Table A.3: Comparison of learned masking against RadSplat pruning method on 3D-MCMC on Mip-
NeRF 360 [2] scenes.
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Appendix B

Experiment Results of Single Lagrangian
Training and Compression

This chapter includes training details and extensive results for single Lagrangian compression models.
Specifically, we provide details for following cases:

1. Training and comparing fully-factorized entropy model and mean-scale hyperprior (hierarchical) en-
tropy model,

2. Training the entropy model after optimizing Gaussian primitives 25K iterations and training for 5K
iterations against training the entropy model after optimizing Gaussian primitives 30K iterations and
training for 10K iterations.

For both cases, we jointly optimize the Gaussian parameters including geometry attributes such as position,
scaling, and rotation) while training the entropy model. Training details and hyperparameters for both
models can be found in Section 3.4. Our experiment results are provided for both fully-factorized [1] and
mean-scale hyperprior [25] entropy models.

B.0.1 Training Entropy Model for 5K After Optimizing Gaussian Primitives for 25K Iter-
ations

For each scene from Tanks & Temples [19], DeepBlending [12], and Mip-NeRF 360 [2], we train one
model for each rate-distortion tradeoff. Specifically, we train one model for each scene and λ where λ ∈
{0.005, 0.001, 0.0001}.

3D-MCMC with RadSplat pruning with λ = 0.005

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

train 6.61 21.34 / 0.791 / 0.240 6.50 21.49 / 0.794 / 0.236 127.14 22.82 / 0.838 / 0.192

truck 11.82 24.48 / 0.852 / 0.172 11.68 24.50 / 0.853 / 0.171 228.01 26.40 / 0.898 / 0.119

average 9.22 22.91 / 0.822 / 0.206 9.09 23.00 / 0.824 / 0.204 177.58 24.61 / 0.868 / 0.156

Table B.1: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on Tanks & Temples [19] scenes for λ = 0.005. The entropy models are trained for 5, 000 iterations
after optimizing the Gaussian primitives for 25, 000 iterations.
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3D-MCMC with RadSplat pruning with λ = 0.005

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

playroom 3.63 26.51 / 0.876 / 0.303 3.70 26.52 / 0.875 / 0.305 80.06 29.90 / 0.906 / 0.255

drjohnson 6.71 26.72 / 0.876 / 0.300 6.65 26.82 / 0.876 / 0.301 147.43 28.77 / 0.903 / 0.256

average 5.17 26.62 / 0.876 / 0.302 5.17 26.67 / 0.876 / 0.303 113.75 29.34 / 0.905 / 0.256

Table B.2: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on DeepBlending [12] scenes for λ = 0.005. The entropy models are trained for 5, 000 iterations after
optimizing the Gaussian primitives for 25, 000 iterations.

3D-MCMC with RadSplat pruning with λ = 0.005

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

bicycle 39.32 24.08 / 0.739 / 0.229 37.43 24.22 / 0.743 / 0.223 721.45 25.69 / 0.797 / 0.174

bonsai 7.93 27.24 / 0.886 / 0.259 7.81 27.50 / 0.891 / 0.257 156.07 32.52 / 0.946 / 0.196

counter 8.73 26.22 / 0.853 / 0.257 8.71 26.41 / 0.857 / 0.254 166.53 29.27 / 0.915 / 0.190

flowers 33.08 21.34 / 0.598 / 0.326 32.65 21.37 / 0.600 / 0.326 587.23 22.06 / 0.643 / 0.290

garden 46.28 25.69 / 0.811 / 0.164 45.29 25.73 / 0.813 / 0.161 920.57 27.75 / 0.876 / 0.096

kitchen 12.78 27.69 / 0.874 / 0.186 12.46 28.12 / 0.880 / 0.180 269.49 31.99 / 0.932 / 0.123

room 6.06 28.18 / 0.875 / 0.267 6.08 28.32 / 0.879 / 0.265 128.41 32.14 / 0.928 / 0.205

stump 37.11 25.75 / 0.748 / 0.237 36.84 25.77 / 0.748 / 0.236 674.04 27.43 / 0.812 / 0.173

treehill 31.67 22.37 / 0.617 / 0.337 30.83 22.41 / 0.619 / 0.332 546.15 23.04 / 0.660 / 0.277

average 24.88 25.40 / 0.778 / 0.251 24.12 25.54 / 0.781 / 0.248 463.44 28.10 / 0.834 / 0.192

Table B.3: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on MipNeRF 360 [2] scenes for λ = 0.005. The entropy models are trained for 5, 000 iterations after
optimizing the Gaussian primitives for 25, 000 iterations.

3D-MCMC with RadSplat pruning with λ = 0.001

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

train 9.71 22.36 / 0.818 / 0.213 9.37 22.42 / 0.819 / 0.212 127.14 22.82 / 0.838 / 0.192

truck 17.70 25.55 / 0.877 / 0.144 17.34 25.60 / 0.877 / 0.143 228.01 26.40 / 0.898 / 0.119

average 13.71 23.96 / 0.848 / 0.179 13.36 24.01 / 0.848 / 0.178 177.58 24.61 / 0.868 / 0.156

Table B.4: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on Tanks & Temples [19] scenes for λ = 0.001. The entropy models are trained for 5, 000 iterations
after optimizing the Gaussian primitives for 25, 000 iterations.
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3D-MCMC with RadSplat pruning with λ = 0.001

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

playroom 5.49 27.61 / 0.889 / 0.285 5.53 27.61 / 0.890 / 0.285 80.06 29.90 / 0.906 / 0.255

drjohnson 9.51 27.84 / 0.890 / 0.277 9.02 27.94 / 0.891 / 0.276 147.43 28.77 / 0.903 / 0.256

average 7.50 27.73 / 0.890 / 0.281 7.28 27.78 / 0.891 / 0.281 113.75 29.34 / 0.905 / 0.256

Table B.5: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on DeepBlending [12] scenes for λ = 0.001. The entropy models are trained for 5, 000 iterations after
optimizing the Gaussian primitives for 25, 000 iterations.

3D-MCMC with RadSplat pruning with λ = 0.001

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

bicycle 60.15 25.03 / 0.770 / 0.200 56.59 25.12 / 0.773 / 0.197 721.45 25.69 / 0.797 / 0.174

bonsai 12.77 29.61 / 0.920 / 0.224 12.37 30.11 / 0.922 / 0.223 156.07 32.52 / 0.946 / 0.196

counter 13.86 28.06 / 0.889 / 0.220 13.74 28.14 / 0.890 / 0.219 166.53 29.27 / 0.915 / 0.190

flowers 50.61 21.75 / 0.625 / 0.303 49.58 21.75 / 0.625 / 0.303 587.23 22.06 / 0.643 / 0.290

garden 72.76 26.94 / 0.849 / 0.127 72.08 26.95 / 0.849 / 0.126 920.57 27.75 / 0.876 / 0.096

kitchen 20.77 30.17 / 0.909 / 0.149 20.19 30.29 / 0.911 / 0.148 269.49 31.99 / 0.932 / 0.123

room 9.35 30.12 / 0.903 / 0.237 9.15 30.24 / 0.905 / 0.236 128.41 32.14 / 0.928 / 0.205

stump 58.03 26.46 / 0.776 / 0.207 57.01 26.50 / 0.777 / 0.206 674.04 27.43 / 0.812 / 0.173

treehill 49.12 22.88 / 0.641 / 0.306 45.73 22.88 / 0.643 / 0.304 546.15 23.04 / 0.660 / 0.277

average 38.60 26.67 / 0.809 / 0.219 37.38 26.89 / 0.810 / 0.218 463.44 28.10 / 0.834 / 0.192

Table B.6: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on MipNeRF 360 [2] scenes for λ = 0.001. The entropy models are trained for 5, 000 iterations after
optimizing the Gaussian primitives for 25, 000 iterations.

3D-MCMC with RadSplat pruning with λ = 0.0001

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

train 15.96 22.65 / 0.829 / 0.201 14.30 22.65 / 0.829 / 0.201 127.14 22.82 / 0.838 / 0.192

truck 29.76 25.98 / 0.888 / 0.130 27.30 25.98 / 0.888 / 0.130 228.01 26.40 / 0.898 / 0.119

average 22.86 24.32 / 0.859 / 0.166 20.80 24.32 / 0.859 / 0.166 177.58 24.61 / 0.868 / 0.156

Table B.7: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on Tanks & Temples [19] scenes for λ = 0.0001. The entropy models are trained for 5, 000 iterations
after optimizing the Gaussian primitives for 25, 000 iterations.
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3D-MCMC with RadSplat pruning with λ = 0.0001

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

playroom 9.19 28.32 / 0.895 / 0.276 8.93 28.30 / 0.895 / 0.276 80.06 29.90 / 0.906 / 0.255

drjohnson 16.20 28.29 / 0.895 / 0.268 14.45 28.30 / 0.896 / 0.267 147.43 28.77 / 0.903 / 0.256

average 12.70 28.31 / 0.895 / 0.272 11.69 28.30 / 0.896 / 0.272 113.75 29.34 / 0.905 / 0.256

Table B.8: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on DeepBlending [12] scenes for λ = 0.0001. The entropy models are trained for 5, 000 iterations
after optimizing the Gaussian primitives for 25, 000 iterations.

3D-MCMC with RadSplat pruning with λ = 0.0001

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

bicycle 99.15 25.40 / 0.784 / 0.179 87.55 25.39 / 0.784 / 0.182 721.45 25.69 / 0.797 / 0.174

bonsai 21.70 31.60 / 0.937 / 0.205 19.96 31.62 / 0.937 / 0.205 156.07 32.52 / 0.946 / 0.196

counter 22.94 28.77 / 0.904 / 0.202 21.17 28.77 / 0.904 / 0.202 166.53 29.27 / 0.915 / 0.190

flowers 82.77 21.92 / 0.636 / 0.293 75.93 21.92 / 0.636 / 0.293 587.23 22.06 / 0.643 / 0.290

garden 76.87 27.40 / 0.865 / 0.108 77.61 27.41 / 0.865 / 0.108 920.57 27.75 / 0.876 / 0.096

kitchen 35.58 31.26 / 0.922 / 0.133 32.56 31.26 / 0.923 / 0.132 269.49 31.99 / 0.932 / 0.123

room 16.24 31.34 / 0.917 / 0.221 15.13 31.36 / 0.917 / 0.221 128.41 32.14 / 0.928 / 0.205

stump 94.38 26.78 / 0.790 / 0.189 87.12 26.78 / 0.790 / 0.189 674.04 27.43 / 0.812 / 0.173

treehill 79.13 23.01 / 0.653 / 0.285 70.28 23.01 / 0.653 / 0.285 546.15 23.04 / 0.660 / 0.277

average 58.75 27.50 / 0.823 / 0.202 54.15 27.50 / 0.823 / 0.202 463.44 28.10 / 0.834 / 0.192

Table B.9: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on MipNeRF 360 [2] scenes for λ = 0.0001. The entropy models are trained for 5, 000 iterations after
optimizing the Gaussian primitives for 25, 000 iterations.
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B.0.2 Training Entropy Model for 10K After Optimizing Gaussian Primitives for 30K It-
erations

For each scene from Tanks & Temples [19], DeepBlending [12], and Mip-NeRF 360 [2], we train one
model for each rate-distortion tradeoff. Specifically, we train one model for each scene and λ where λ ∈
{0.005, 0.001, 0.0001}.

3D-MCMC with RadSplat pruning with λ = 0.005

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

train 6.71 21.41 / 0.790 / 0.238 6.65 21.49 / 0.793 / 0.237 127.14 22.82 / 0.838 / 0.192

truck 11.83 24.62 / 0.853 / 0.170 11.76 24.68 / 0.855 / 0.169 228.01 26.40 / 0.898 / 0.119

average 9.27 23.02 / 0.822 / 0.204 9.21 23.09 / 0.824 / 0.203 177.58 24.61 / 0.868 / 0.156

Table B.10: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on Tanks & Temples [19] scenes for λ = 0.005. The entropy models are trained for 10, 000 iterations
after optimizing the Gaussian primitives for 30, 000 iterations.

3D-MCMC with RadSplat pruning with λ = 0.005

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

playroom 3.61 26.36 / 0.874 / 0.307 3.69 26.58 / 0.874 / 0.306 80.06 29.90 / 0.906 / 0.255

drjohnson 6.65 26.98 / 0.875 / 0.301 6.56 27.06 / 0.877 / 0.300 147.43 28.77 / 0.903 / 0.256

average 5.13 26.67 / 0.875 / 0.304 5.13 26.82 / 0.876 / 0.303 113.75 29.34 / 0.905 / 0.256

Table B.11: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on DeepBlending [12] scenes for λ = 0.005. The entropy models are trained for 10, 000 iterations
after optimizing the Gaussian primitives for 30, 000 iterations.
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3D-MCMC with RadSplat pruning with λ = 0.005

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

bicycle 40.53 24.22 / 0.741 / 0.226 39.35 24.29 / 0.744 / 0.223 721.45 25.69 / 0.797 / 0.174

bonsai 7.85 27.14 / 0.888 / 0.259 7.66 27.69 / 0.891 / 0.256 156.07 32.52 / 0.946 / 0.196

counter 8.67 26.28 / 0.855 / 0.257 8.53 26.42 / 0.858 / 0.255 166.53 29.27 / 0.915 / 0.190

flowers 33.81 21.31 / 0.598 / 0.325 33.39 21.33 / 0.601 / 0.323 587.23 22.06 / 0.643 / 0.290

garden 46.77 25.72 / 0.810 / 0.163 45.80 25.80 / 0.812 / 0.161 920.57 27.75 / 0.876 / 0.096

kitchen 12.69 28.00 / 0.877 / 0.184 12.58 28.26 / 0.881 / 0.180 269.49 31.99 / 0.932 / 0.123

room 6.00 28.48 / 0.876 / 0.270 6.01 28.67 / 0.879 / 0.268 128.41 32.14 / 0.928 / 0.205

stump 37.87 25.67 / 0.745 / 0.239 36.80 25.72 / 0.747 / 0.237 674.04 27.43 / 0.812 / 0.173

treehill 32.25 22.33 / 0.617 / 0.336 31.31 22.30 / 0.618 / 0.332 546.15 23.04 / 0.660 / 0.277

average 25.16 25.46 / 0.778 / 0.251 24.60 25.61 / 0.781 / 0.248 463.44 28.10 / 0.834 / 0.192

Table B.12: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on MipNeRF 360 [2] scenes for λ = 0.005. The entropy models are trained for 10, 000 iterations after
optimizing the Gaussian primitives for 30, 000 iterations.

3D-MCMC with RadSplat pruning with λ = 0.001

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

train 9.98 22.46 / 0.818 / 0.212 9.91 22.47 / 0.820 / 0.210 127.14 22.82 / 0.838 / 0.192

truck 18.00 25.66 / 0.877 / 0.143 17.67 25.68 / 0.878 / 0.142 228.01 26.40 / 0.898 / 0.119

average 13.99 24.06 / 0.848 / 0.178 13.79 24.08 / 0.849 / 0.176 177.58 24.61 / 0.868 / 0.156

Table B.13: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on Tanks & Temples [19] scenes for λ = 0.001. The entropy models are trained for 10, 000 iterations
after optimizing the Gaussian primitives for 30, 000 iterations.

3D-MCMC with RadSplat pruning with λ = 0.001

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

playroom 5.58 27.46 / 0.885 / 0.292 5.64 27.52 / 0.887 / 0.289 80.06 29.90 / 0.906 / 0.255

drjohnson 9.86 27.99 / 0.891 / 0.277 9.51 27.99 / 0.891 / 0.276 147.43 28.77 / 0.903 / 0.256

average 7.72 27.73 / 0.888 / 0.285 7.58 27.76 / 0.889 / 0.283 113.75 29.34 / 0.905 / 0.256

Table B.14: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on DeepBlending [12] scenes for λ = 0.001. The entropy models are trained for 10, 000 iterations
after optimizing the Gaussian primitives for 30, 000 iterations.
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3D-MCMC with RadSplat pruning with λ = 0.001

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

bicycle 63.06 25.09 / 0.770 / 0.198 60.20 25.16 / 0.772 / 0.196 721.45 25.69 / 0.797 / 0.174

bonsai 12.84 29.65 / 0.921 / 0.225 12.33 30.19 / 0.923 / 0.223 156.07 32.52 / 0.946 / 0.196

counter 14.08 28.13 / 0.890 / 0.220 13.79 28.24 / 0.891 / 0.219 166.53 29.27 / 0.915 / 0.190

flowers 52.66 21.71 / 0.625 / 0.301 51.63 21.74 / 0.627 / 0.300 587.23 22.06 / 0.643 / 0.290

garden 75.39 27.02 / 0.849 / 0.126 75.10 27.03 / 0.850 / 0.125 920.57 27.75 / 0.876 / 0.096

kitchen 21.15 30.46 / 0.912 / 0.148 20.94 30.53 / 0.913 / 0.146 269.49 31.99 / 0.932 / 0.123

room 9.35 30.34 / 0.903 / 0.241 9.14 30.52 / 0.904 / 0.240 128.41 32.14 / 0.928 / 0.205

stump 60.16 26.40 / 0.773 / 0.209 58.62 26.42 / 0.773 / 0.208 674.04 27.43 / 0.812 / 0.173

treehill 51.00 22.73 / 0.640 / 0.305 47.59 22.76 / 0.641 / 0.303 546.15 23.04 / 0.660 / 0.277

average 39.97 26.84 / 0.809 / 0.219 38.82 26.95 / 0.810 / 0.218 463.44 28.10 / 0.834 / 0.192

Table B.15: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on MipNeRF 360 [2] scenes for λ = 0.001. The entropy models are trained for 10, 000 iterations after
optimizing the Gaussian primitives for 30, 000 iterations.

3D-MCMC with RadSplat pruning with λ = 0.0001

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

train 16.31 22.62 / 0.830 / 0.198 15.50 22.66 / 0.830 / 0.198 127.14 22.82 / 0.838 / 0.192

truck 29.91 26.03 / 0.889 / 0.129 28.54 26.03 / 0.889 / 0.129 228.01 26.40 / 0.898 / 0.119

average 23.11 24.33 / 0.860 / 0.164 22.02 24.35 / 0.860 / 0.164 177.58 24.61 / 0.868 / 0.156

Table B.16: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on Tanks & Temples [19] scenes for λ = 0.0001. The entropy models are trained for 10, 000 iterations
after optimizing the Gaussian primitives for 30, 000 iterations.

3D-MCMC with RadSplat pruning with λ = 0.0001

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

playroom 9.68 27.89 / 0.890 / 0.284 9.38 27.88 / 0.890 / 0.283 80.06 29.90 / 0.906 / 0.255

drjohnson 16.57 28.41 / 0.896 / 0.267 15.76 28.45 / 0.896 / 0.267 147.43 28.77 / 0.903 / 0.256

average 13.13 28.15 / 0.893 / 0.276 12.57 28.17 / 0.893 / 0.275 113.75 29.34 / 0.905 / 0.256

Table B.17: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on DeepBlending [12] scenes for λ = 0.0001. The entropy models are trained for 10, 000 iterations
after optimizing the Gaussian primitives for 30, 000 iterations.
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3D-MCMC with RadSplat pruning with λ = 0.0001

Fully-Factorized Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

bicycle 99.15 25.40 / 0.784 / 0.179 92.34 25.40 / 0.784 / 0.179 721.45 25.69 / 0.797 / 0.174

bonsai 21.49 31.68 / 0.937 / 0.205 20.81 31.72 / 0.938 / 0.205 156.07 32.52 / 0.946 / 0.196

counter 22.81 28.83 / 0.905 / 0.201 22.23 28.82 / 0.905 / 0.201 166.53 29.27 / 0.915 / 0.190

flowers 84.52 21.89 / 0.636 / 0.290 80.65 21.89 / 0.636 / 0.290 587.23 22.06 / 0.643 / 0.290

garden 120.94 27.45 / 0.865 / 0.107 119.74 27.44 / 0.865 / 0.107 920.57 27.75 / 0.876 / 0.096

kitchen 34.67 31.50 / 0.925 / 0.130 33.83 31.51 / 0.926 / 0.130 269.49 31.99 / 0.932 / 0.123

room 16.12 31.52 / 0.916 / 0.224 15.41 31.51 / 0.916 / 0.224 128.41 32.14 / 0.928 / 0.205

stump 95.32 26.67 / 0.785 / 0.191 91.30 26.68 / 0.785 / 0.192 674.04 27.43 / 0.812 / 0.173

treehill 78.36 22.89 / 0.651 / 0.283 75.12 22.89 / 0.651 / 0.282 546.15 23.04 / 0.660 / 0.277

average 63.71 27.53 / 0.823 / 0.201 61.27 27.54 / 0.823 / 0.201 463.44 28.10 / 0.834 / 0.192

Table B.18: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on MipNeRF 360 [2] scenes for λ = 0.0001. The entropy models are trained for 10, 000 iterations
after optimizing the Gaussian primitives for 30, 000 iterations.
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B.0.3 Experiment Results of Freezing Gaussian Primitive Geometry Attributes During En-
tropy Model Training

In contrast to experiments in previous sections of Appendix, we keep the Gaussian primitive geometry
attributes, i.e. position, scaling, rotation, fixed in this section. The reason we try this is that the Gaussian
splatting is more sensitive to geometry attributes of Gaussian primitives in contrast to visual attributes such
as spherical harmonics as explained in Section 4.4.6.

For each case in this subsection, we train one model for each rate-distortion tradeoff. Specifically, we
train one model for each scene and λ where λ ∈ {0.005, 0.001, 0.0001}. Since mean-scale hyperprior
appears as slightly superior to fully-factorized entropy model, we repeat experiments with frozen geometry
attributes only for mean-scale hyperprior entropy model.

3D-MCMC with RadSplat pruning with λ = 0.005

Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

train 6.93 21.73 / 0.802 / 0.230 127.14 22.82 / 0.838 / 0.192

truck 12.48 24.97 / 0.866 / 0.157 228.01 26.40 / 0.898 / 0.119

average 9.71 23.35 / 0.834 / 0.194 177.58 24.61 / 0.868 / 0.156

Table B.19: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on Tanks & Temples [19] scenes for λ = 0.005. The entropy models are trained for 5, 000 iterations
after optimizing the Gaussian primitives for 25, 000 iterations. The 5, 000 iterations are performed without
optimizing position, scaling, and rotation attributes of Gaussian primitives.

3D-MCMC with RadSplat pruning with λ = 0.005

Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

playroom 4.13 26.87 / 0.883 / 0.290 80.06 29.90 / 0.906 / 0.255

drjohnson 7.46 27.58 / 0.886 / 0.283 147.43 28.77 / 0.903 / 0.256

average 5.80 27.23 / 0.885 / 0.287 113.75 29.34 / 0.905 / 0.256

Table B.20: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on DeepBlending [12] scenes for λ = 0.005. The entropy models are trained for 5, 000 iterations
after optimizing the Gaussian primitives for 25, 000 iterations. The 5, 000 iterations are performed without
optimizing position, scaling, and rotation attributes of Gaussian primitives.

59



APPENDIX B. EXPERIMENT RESULTS OF SINGLE LAGRANGIAN TRAINING AND COMPRESSION

3D-MCMC with RadSplat pruning with λ = 0.005

Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

bicycle 40.76 24.12 / 0.758 / 0.211 721.45 25.69 / 0.797 / 0.174

bonsai 8.36 28.15 / 0.902 / 0.244 156.07 32.52 / 0.946 / 0.196

counter 9.00 26.59 / 0.868 / 0.239 166.53 29.27 / 0.915 / 0.190

flowers 35.28 21.59 / 0.610 / 0.320 587.23 22.06 / 0.643 / 0.290

garden 48.07 25.67 / 0.831 / 0.146 920.57 27.75 / 0.876 / 0.096

kitchen 13.27 28.24 / 0.891 / 0.170 269.49 31.99 / 0.932 / 0.123

room 6.47 28.64 / 0.891 / 0.244 128.41 32.14 / 0.928 / 0.205

stump 38.62 26.16 / 0.775 / 0.215 674.04 27.43 / 0.812 / 0.173

treehill 32.65 22.43 / 0.630 / 0.321 546.15 23.04 / 0.660 / 0.277

average 25.83 25.73 / 0.795 / 0.234 463.44 28.10 / 0.834 / 0.192

Table B.21: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on MipNeRF 360 [2] scenes for λ = 0.005. The entropy models are trained for 10, 000 iterations
after optimizing the Gaussian primitives for 30, 000 iterations. The 5, 000 iterations are performed without
optimizing position, scaling, and rotation attributes of Gaussian primitives.

3D-MCMC with RadSplat pruning with λ = 0.001

Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

train 9.71 22.72 / 0.827 / 0.207 127.14 22.82 / 0.838 / 0.192

truck 17.76 26.03 / 0.889 / 0.130 228.01 26.40 / 0.898 / 0.119

average 13.74 24.38 / 0.858 / 0.169 177.58 24.61 / 0.868 / 0.156

Table B.22: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on Tanks & Temples [19] scenes for λ = 0.001. The entropy models are trained for 5, 000 iterations
after optimizing the Gaussian primitives for 25, 000 iterations. The 5, 000 iterations are performed without
optimizing position, scaling, and rotation attributes of Gaussian primitives.
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3D-MCMC with RadSplat pruning with λ = 0.001

Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

playroom 5.81 28.15 / 0.899 / 0.269 80.06 29.90 / 0.906 / 0.255

drjohnson 9.57 28.61 / 0.900 / 0.264 147.43 28.77 / 0.903 / 0.256

average 7.69 28.38 / 0.900 / 0.267 113.75 29.34 / 0.905 / 0.256

Table B.23: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on DeepBlending [12] scenes for λ = 0.001. The entropy models are trained for 5, 000 iterations
after optimizing the Gaussian primitives for 25, 000 iterations. The 5, 000 iterations are performed without
optimizing position, scaling, and rotation attributes of Gaussian primitives.

3D-MCMC with RadSplat pruning with λ = 0.001

Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

bicycle 59.25 25.35 / 0.787 / 0.186 721.45 25.69 / 0.797 / 0.174

bonsai 12.14 30.86 / 0.931 / 0.212 156.07 32.52 / 0.946 / 0.196

counter 13.76 28.54 / 0.901 / 0.205 166.53 29.27 / 0.915 / 0.190

flowers 51.90 21.96 / 0.635 / 0.300 587.23 22.06 / 0.643 / 0.290

garden 72.76 27.19 / 0.862 / 0.114 920.57 27.75 / 0.876 / 0.096

kitchen 20.28 30.61 / 0.920 / 0.139 269.49 31.99 / 0.932 / 0.123

room 9.21 30.94 / 0.917 / 0.216 128.41 32.14 / 0.928 / 0.205

stump 58.51 27.11 / 0.801 / 0.188 674.04 27.43 / 0.812 / 0.173

treehill 48.25 22.93 / 0.651 / 0.295 546.15 23.04 / 0.660 / 0.277

average 38.45 27.28 / 0.824 / 0.206 463.44 28.10 / 0.834 / 0.192

Table B.24: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on MipNeRF 360 [2] scenes for λ = 0.001. The entropy models are trained for 5, 000 iterations
after optimizing the Gaussian primitives for 25, 000 iterations. The 5, 000 iterations are performed without
optimizing position, scaling, and rotation attributes of Gaussian primitives.
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3D-MCMC with RadSplat pruning with λ = 0.0001

Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

train 14.64 22.99 / 0.835 / 0.198 127.14 22.82 / 0.838 / 0.192

truck 28.05 26.46 / 0.897 / 0.120 228.01 26.40 / 0.898 / 0.119

average 21.35 24.73 / 0.866 / 0.159 177.58 24.61 / 0.868 / 0.156

Table B.25: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on Tanks & Temples [19] scenes for λ = 0.0001. The entropy models are trained for 5, 000 iterations
after optimizing the Gaussian primitives for 25, 000 iterations. The 5, 000 iterations are performed without
optimizing position, scaling, and rotation attributes of Gaussian primitives.

3D-MCMC with RadSplat pruning with λ = 0.0001

Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

playroom 9.10 28.69 / 0.903 / 0.262 80.06 29.90 / 0.906 / 0.255

drjohnson 13.63 28.94 / 0.903 / 0.258 147.43 28.77 / 0.903 / 0.256

average 11.37 28.82 / 0.903 / 0.260 113.75 29.34 / 0.905 / 0.256

Table B.26: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on DeepBlending [12] scenes for λ = 0.0001. The entropy models are trained for 5, 000 iterations
after optimizing the Gaussian primitives for 25, 000 iterations. The 5, 000 iterations are performed without
optimizing position, scaling, and rotation attributes of Gaussian primitives.
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3D-MCMC with RadSplat pruning with λ = 0.0001

Mean-Scale Hyperprior Uncompressed

Scene Size (MB) PSNR / SSIM / LPIPS Size (MB) PSNR / SSIM / LPIPS

bicycle 92.63 25.79 / 0.797 / 0.173 721.45 25.69 / 0.797 / 0.174

bonsai 20.33 32.49 / 0.945 / 0.198 156.07 32.52 / 0.946 / 0.196

counter 21.31 29.30 / 0.913 / 0.192 166.53 29.27 / 0.915 / 0.190

flowers 78.82 22.12 / 0.643 / 0.291 587.23 22.06 / 0.643 / 0.290

garden 114.49 27.75 / 0.875 / 0.098 920.57 27.75 / 0.876 / 0.096

kitchen 32.44 32.01 / 0.931 / 0.125 269.49 31.99 / 0.932 / 0.123

room 15.11 32.08 / 0.93 / 0.206 128.41 32.14 / 0.928 / 0.205

stump 89.34 27.43 / 0.811 / 0.175 674.04 27.43 / 0.812 / 0.173

treehill 72.77 23.09 / 0.660 / 0.279 546.15 23.04 / 0.660 / 0.277

average 59.69 28.01 / 0.834 / 0.193 463.44 28.10 / 0.834 / 0.192

Table B.27: Comparison of learned Fully-Factorized [1] and Mean-Scale Hyperprior Entropy Models
[25] on MipNeRF 360 [2] scenes for λ = 0.001. The entropy models are trained for 5, 000 iterations
after optimizing the Gaussian primitives for 25, 000 iterations. The 5, 000 iterations are performed without
optimizing position, scaling, and rotation attributes of Gaussian primitives.
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Appendix C

Hierarchy Generation Examples on
Different Datasets

In this chapter of the Appendix, we depict some of the visuals for hierarchy generation. Hierarchy generation
aggregates the Gaussian primitives into intermediate nodes for a more compressed representation with fewer
intermediate nodes compared to actual Gaussians. As we go to higher depth levels of the octree hierarchy
as explained in Section 3.5, we have fewer Gaussians, resulting in lower rendering quality. In following
Figures C.1, C.2, and C.3, we visualize the effect of changing depth level for different scenes.
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Figure C.1: Effect of depth variation on visual quality on train scene from Tanks & Temples [19] with-
out compression. Using different levels of octree results in changing granularity of scenes. Specifically,
close points occur more blurry while far away points are less affected from averaging of Gaussian primitives.
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Figure C.2: Effect of depth variation on visual quality on truck scene from Tanks & Temples [19].
Using different levels of Octree results in changing granularity on images. Specifically, close points occur
more blurry while far away points are less affected from averaging of Gaussian primitives.
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Figure C.3: Effect of depth variation on visual quality on room scene from Mip-NeRF 360 [2]. Using
different levels of Octree results in changing granularity on images. Specifically, close points occur more
blurry while far away points are less affected from averaging of Gaussian primitives.
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