

College of Engineering

ELEC 491 – Electrical Engineering Design Project

Final Report

Flexible-Rate Bidirectional Video Compression with
Motion Refinement

Participant Information:

Eren Çetin – 64277

Project Advisor(s)
 Ahmet Murat Tekalp

Ogün Kırmemiş

19.01.2022

Page 2 of 53

Abstract

Video content has been becoming more prevalent in the last decade by capturing 80% of the

online data. As this is the case, more efficient video compression methods are helpful to provide a

better service for people who stream online video content with a limited bandwidth. For that reason,

our aim is to develop a learned bidirectional video compression framework that achieves superior or

competitive rate-distortion performance compared to other works in the literature of video

compression. To achieve the desired results, we employ additional modules such as bidirectional

motion prediction, motion refinement, learned frame fusion and achieve flexible bitrate using a single

model with learned quantization parameters. Testing our network on UVG dataset, a common

benchmark, we achieve competitive or superior results at high bitrates when we compare our results

with other learned video compression networks such as DVC [1], Scale-Space Flow [2], RLVC [3],

and LHBDC [4] in terms of PSNR and MS-SSIM scores. On the other hand, the model achieves

slightly worse rate-distortion performance at low bitrates compared to LHBDC [4] and the traditional

SVT-HEVC codec at very slow preset in terms of PSNR and MS-SSIM. In the following report,

further details of the proposed network are provided extensively with visual results that demonstrate

the effect of main modules.

Page 3 of 53

Table of Contents

Abstract ... 2

1. Introduction ... 4

1.1. Concept ... 4

1.2. Image Compression .. 5

1.3. Video Compression .. 5

2. Related Work .. 7

2.1. Joint Autoregressive and Hierarchical Priors for Learned Image Compression 7

2.2. Deep Video Compression Framework (DVC) ... 8

2.3. Scale-Space Flow (SSF) ... 9

2.4. Asymmetric Gained Deep Image Compression with Continuous Rate Adaptation .. 10

2.5. End-to-End Rate-Distortion Optimized Learned Hierarchical Bi-Directional Video

Compression... 11

3. System Design... 13

3.1. Overview .. 13

3.2. Motion Vector Prediction ... 15

3.3. Motion Refinement ... 16

3.4. Gain and Inverse Gain Unit .. 17

3.5. Learned Frame Fusion .. 19

3.6. Residual Compression .. 20

4. Experiments .. 20

4.1. Setup ... 20

4.2. Datasets .. 20

4.3. Loss Functions .. 21

4.4. Training Details .. 22

5. Analysis and Results ... 23

5.1. Quantitative Results ... 23

5.2. Qualitative Results ... 25

6. Conclusion .. 26

7. References ... 28

8. Appendices .. 29

8.1. Environment (.yml file) .. 29

8.2. U-Net Code [16] ... 31

8.3. Layers Code .. 33

8.4. Model Code .. 36

8.5. Utility Code .. 39

8.6. Training Code ... 45

Page 4 of 53

1. Introduction

1.1. Concept

Compression is an important part of our life, allowing us to use internet and many other data

sources that would be impossible to reach if we had to store or download raw data without

compression. Thanks to Claude Shannon, information theory has brought the age of information with

his celebrated paper defining the information in 1948. He defined the information in terms of “bits”

and provided entropy as a quantitative tool to measure the amount of information. That way,

information can be thought as an increasing function of uncertainty that relies in a signal.

In addition to defining the information in terms of “bits”, he demonstrated that there exists a

maximum rate of transmission over a channel, which we call the bandwidth of a channel.

Accordingly, it is possible to transmit error-free signals as long as transmission rate is less than the

channel capacity. Although inventions in communication have been allowing to reach closer to the

theoretical limit, the available bandwidth has always been a bottleneck in information transfer,

limiting many applications including video livestreaming or playing online games.

As this limit cannot be overcome, one possible solution is compressing the information that is

intended to be transmitted. However, Shannon has once again demonstrated a limit for the

compression rate that cannot be overcome. This lower limit is the entropy of the signal of interest.

Since this limit cannot be exceeded for lossless compression, the aim in applications of lossless image

compression and video compression is to reach as close as possible to the lower bound.

In contrast to lossless compression, the human visual system is less sensitive to high frequency

content which makes it logical to consider lossy compression as a favorable option to get rid of high

frequency content on an image or video. That way, the lower bound can be eliminated while the

distortion on the image or video is minimized with respect to human perception. Because it allows a

greater compression rate and minimizes the distortion on images, lossy compression is widely

adopted in today’s applications that do not require a perfectly reconstructed image. Today, almost all

image and video content on the internet are examples of lossy compression as lossless compression

is not necessary in many applications such as social media and video streaming.

As the raw data consists of redundancies such as temporal or spatial redundancies, certain

transform operations can reduce the entropy of data and allow a more efficient compression with

entropy coding. Since the data after transform must be quantized for compression, the quantization

prevents the one-to-one mapping between encoding and decoding; thus, induces loss of information

during lossy compression. For the rest of this report, we will be only concerned with lossy

Page 5 of 53

compression as it has a wider field of application for image and video compression.

1.2. Image Compression

Image compression is an important step towards video compression as videos are composed of

many temporally linked images. Image compression is possible because of the spatial correlation

between individual pixels on an image. Consider a scene where the picture is divided between sky

and ground. As the sky would be mostly blue and have less change in a close neighborhood, it might

be enough to send very few symbols for a large region. On the other hand, in images which contain

highly non-uniform shapes and structures (such as a city scene with many color variations), the

correlation between pixels is reduced, thus, we require more bits to build the image back.

Figure 1. The framework of lossy image compression.

Considering the framework for the lossy image compression as described in Figure 1, we initially

map the pixel domain representation of our image into a latent representation. The operation provides

a one-to-one mapping; however, the quantization step causes information loss as the operation is not

reversible. As the quantization steps become larger, the amount of distortion in our decoded image

also increases. After the image is quantized, an entropy coder is used to compress the latent

representation in a lossless manner. Subsequently, the decoder decodes the latent representation,

dequantizes it and transforms it back into pixel domain.

1.3. Video Compression

Today, over 80% of the data on the internet is composed of video data [5]. This percentage is

only expected to increase with newer technologies and more demand for entertainment through tech

companies such as Netflix, Google, and Amazon. For that reason, the research for more efficient

video compression methods has been in rise to transmit video content with less lagging and store it

in a smaller space.

In addition to the spatial correlation within the frames of a video, the frames have a high

Page 6 of 53

correlation as videos mostly do not have interruptions and have a smooth transition between frames.

For that reason, the video compression techniques also make use of the temporal correlation by

applying inter prediction techniques. To exploit the temporal correlation, video compression models

utilize motion estimation and compensation components as the motion information connects two

consequent frames to each other.

The importance of research on learned video compression comes from the capability of

performing nonlinear transforms with deep neural networks. Although traditional video codecs are

still in employment, they can only perform linear transforms that can fall short for decorrelation of

information and entropy reduction. Furthermore, the combinatorial nature of video codecs causes a

great problem for defining the optimal video codec. As learned video codecs can be optimized in an

end-to-end manner with a single rate-distortion loss, the optimality is less of a concern.

The problem that we have to address in video compression is a joint optimization problem which

considers several components of an autoencoder architecture. Autoencoder is composed of an encoder

and a decoder which has similar tasks as the traditional video codecs. While the encoder transforms

the pixel domain image representation into a latent representation with lower entropy, the decoder

transforms it back to the pixel domain representation while keeping the quality as high as possible.

For video compression, we encode and decode the motion vectors and the residual frames which

allow us to make use of the temporal correlation and reduce the entropy compared to single frame

image compression. To perform this operation, we utilize two separate autoencoders to compress the

motion vectors and the residual frames. In addition to the encoder and the decoder, the entropy coding

requires accurate estimation of entropy parameters in order to reduce the bitrate as much as possible.

Thus, each autoencoder architecture requires a prior network to estimate the mean and scale of the

latent representations. The bitrate is estimated with the entropy of our latent representations as entropy

coding is capable of achieving close to minimum bound bitrates. As the coding performance of our

network depends on the rate-distortion performance, we optimize the whole model using an end-to-

end approach with a single loss function and simultaneous optimization of all components.

1.4. Objectives

The objective of this project is to build a learned bidirectional video compression network that

can be optimized in an end-to-end manner and can achieve a competitive rate-distortion performance

compared to other works in the literature. As unidirectional video compression yields a worse rate-

distortion performance both in case of traditional codecs and learned codecs, our aim is to build a

bidirectional video compression network instead of a unidirectional compression network that can

Page 7 of 53

also achieve different bitrates by using a single network for all levels. That way we aim to reduce the

training cost and achieve a better generalization.

Furthermore, a major aim of this project is to improve over the bidirectional video compression

framework proposed by Yilmaz and Tekalp [4] with the use of special modules such as motion

prediction and motion refinement modules. In addition to these modules, we aim to achieve arbitrary

rate-distortion trade-offs using the gain unit proposed by Cui et al. [6] for image compression.

2. Related Work

Our model builds on the previous work that was presented in both image compression and video

compression domains. In following sections, the details of these prior works are explained while

comparing them with our proposed network.

2.1. Joint Autoregressive and Hierarchical Priors for Learned Image

Compression

For image compression, one important work is provided by Minnen et al. [7]. With their work,

Minnen et al. [7] propose a model that brings an improvement to the learned image compression

domain by modeling the probability distribution of image latent representations with a mean and a

scale value. Since the probability modeling has a high importance for entropy coding, the model can

lower the bitrate since the distribution can be better estimated.

Figure 2. The architecture of “Joint Autoregressive and Hierarchical Priors” network proposed by

Minnen et al. [7]

Furthermore, as depicted in Figure 2, the model proposes a causal context model to exploit the

spatial correlation further. That way, the entropy parameters (mean and scale) are estimated better to

encode the latent representation with a more precise probability estimation.

As the model provides well estimation of entropy parameters, the architecture is utilized in our

Page 8 of 53

model for the compression of motion vectors and residual frames thinking as if they were images that

are compressed with this model. Thus, this network has an important place in our proposed video

compression network.

2.2. Deep Video Compression Framework (DVC)

DVC model [1] is a pillar stone in the literature of end-to-end optimized deep video compression

networks. The model uses unidirectional motion vectors to use the temporal correlation between

frames and provide a low delay learned video codec. These motion vectors are composed of two

channels where the channels represent the shift in a pixel in horizontal direction and vertical direction.

Figure 3. The architecture of DVC network proposed by Lu et al. [1]

Same as our model, the initial keyframes of the group of pictures is coded using a learned image

compression network while the rest of the frames of the group of pictures are compressed using the

network provided in Figure 3. First of all, the motion vectors are calculated using a learned motion

estimation network and the motion vectors are encoded into a latent representation. The latent

representation is quantized and passed to the decoder network that reverts the latent representation

back into motion vectors that were estimated by the encoder. Later on, a motion compensation

network performs bilinear warping on the last reference frame that is available to decoder with the

estimated and transmitted motion vectors. The warped frames are also processed by a motion

compensation network that aims to reduce the warping artifacts. That way, the motion compensated

frame is acquired. Finally, the residual frame is calculated by subtracting the ground truth frame from

the motion compensated frame and compressed with a similar architecture as the motion compression

network. The residual frame is added back to the motion compensated frame at the decoder side and

Page 9 of 53

the output frame is achieved. After compressing rest of the frames using the proposed network, the

loss is calculated over all frames where the loss is the rate-distortion loss.

2.3. Scale-Space Flow (SSF)

Similar to DVC [1], the Scale-Space Flow (SSF) model proposed by Agustsson et al. [2] separates

the motion and residual information and encodes them in separate autoencoder architectures.

However, the back warping operation that is utilized by the DVC [1] network yields motion

compensation artifacts that reduce the frame quality. This effect was avoided by employing a motion

compensation network to reduce the artifacts. With SSF model [2], the back warping operation is

replaced with scale-space warping. Scale-space warping adds a third channel to the motion vectors

called the scale channel and allows this third channel to resemble the uncertainty that is present in

difficult to predict areas of the frame. Using this channel, the scale-space warping operation blurs the

regions where the motion compensation would yield worse artifacts and blur these regions in order

to improve the frame quality while also reducing the entropy in the residual frames.

Figure 4. The architecture of the Scale-Space Flow network proposed by Agustsson et al. [2]

As depicted in Figure 4, the compression framework starts by coding the first frame of the group

of pictures using keyframe compression (I-compression) as a reference frame. Afterwards, the scale-

space flow autoencoder network takes the reference frame and the current input frame to construct a

scale-space flow by compressing the latent representations. Using the scale-space flow warping, the

reference frame is warped to acquire the motion compensated (warped) prediction frame and the

residual frame. Finally, the residual frame is compressed in a separate autoencoder network and the

reconstructed residual frame is added back to the warped prediction to achieve the reconstructed

Page 10 of 53

current frame.

The framework is similar to our network since the network does not compress the vectors that

contain the motion vectors but constructs the motion vectors using an autoencoder architecture after

giving reference and current frames as input.

2.4. Asymmetric Gained Deep Image Compression with Continuous Rate

Adaptation

The work of Cui et al. [6] does not provide a complete architecture for video or image

compression, however they demonstrate how usage of gain and inverse gain units can help in

achieving continuous rate-distortion curves and avoid training multiple networks.

Figure 5. The difference between channel influences on quality of reconstructed frame [6].

Since the latent representation of a frame or motion vector has to be quantized before entropy

coding, the quantization bin size has to be deduced. Instead of training separate networks to learn the

quantization bin size inherently through the convolution layers, Cui et al. [6] propose learning

channel-wise quantization parameters for different bitrate levels. They demonstrate that separate

channels have varying relative importance on frame quality in Figure 5. Thus, they propose that we

can scale the channels with different parameters before the quantization step and learn the scale

parameters during the training.

The gain and inverse gain units are used to scale the latent representation by multiplying each

channel with a different parameter for the respective bitrate level and change the quantization bin size

effectively. The scaling parameters of the gain and inverse gain units are paired with each bitrate level

and rate-distortion trade-off value. After achieving a latent representation from the encoder, the latent

representation is multiplied by the channel-wise scaling vector (gain vector) of the gain module. Then,

the multiplied latent representation is quantized and passed to the decoder. The decoder performs an

inverse scaling operation by multiplying the quantized and reconstructed latent representation with

Page 11 of 53

its own learned channel-wise scaling parameters. Subsequently, the decoder decodes the latent

representation. These scaling parameters are learned throughout the training and can be thought of as

vectors which multiply the channels of latent representations.

The work of Cui et al. [6] has an important place in our network as it allows the adoption of

flexible rate in our model without training separate instances. Although they propose the use of gain

and inverse gain units in image compression, our model successfully integrates these components

into video compression framework by using them in autoencoders of both motion compression and

residual compression modules.

2.5. End-to-End Rate-Distortion Optimized Learned Hierarchical Bi-Directional

Video Compression

Yilmaz and Tekalp [4] design a learned hierarchical bidirectional video compression network

(LHBDC) to demonstrate the superior results that can be achieved with hierarchical bidirectional

video coding frameworks compared to sequential video compression frameworks. They propose

encoding videos with group of picture size of 8 frames and 𝐾 = 3 hierarchical levels. Their proposed

method compresses first reference frames as keyframes while compressing every other frame in

between the initial reference frames as bidirectional predicted frames.

Figure 6. The architecture of LHBDC proposed by Yilmaz and Tekalp [4].

After compressing the initial keyframes at hierarchical level 𝐾 = 1 using the version of learned

still-image compression network proposed by Cheng et al. [8] without attention layers, the rest of the

frames (7 frames) are coded bidirectionally using the network in Figure 6 with the initial keyframes

Page 12 of 53

as reference frames. The bidirectional predicted frames take the closest decoded past and future

frames as reference frames for the backward and forward motion estimation and compensation.

To perform bidirectional compression, the network initially estimates the motion vectors from the

past and future decoded reference frames to the current frame. The estimation is performed by SPyNet

[9] pretrained motion estimation network. Simultaneously, the motion vectors between the past and

future decoded reference frames are also estimated with the same network to be used for the prediction

of motion vectors. Making a linear motion assumption, Yilmaz and Tekalp [4] assumes that the half

of the motion vectors between the past and future reference frames should yield a close prediction for

the motion vectors between the past reference frame and the current frame. Calling the halved motion

vectors between the past and future reference frames as predictions, they subtract these predictions

from the motion vectors between the past reference frame and the current frame and repeat the same

operation for the motion vectors between the future reference frame and the current frame. That way,

they aim to compress the residual motion vectors which are the subtracted deviations from the

predicted motion vectors. The residual motion vectors are then subsampled using a cubic filter to use

less bits. The subsampled vectors are then compressed using a network that is a version of network

by Minnen et al. [7] with residual blocks.

 After reconstructing the residual motion vectors at the decoder side, these vectors are

interpolated using a bicubic filter and added back to the predicted motion vectors and used to warp

the reference frames to acquire the current frame. In order to utilize the bidirectional motion

information, the two warped frames are fused using a motion compensation mask that is constructed

with a U-Net architecture and warped frames as inputs. The fused frame is the final motion

compensated frame that allows to compute the residual frame by subtracting it from the current frame.

Finally, the residual frame is compressed with an autoencoder network that is similar to the motion

compression network. The residual frame is added back to the motion compensated frame after it is

reconstructed at the decoder to form the final reconstructed current frame.

As our model is designed in collaboration with Yilmaz and Tekalp, we adopt some components

from their previous work with many adjustments. First of all, our framework uses a different keyframe

compression network. Although the hierarchical structure of our bidirectional compression

framework is same as the LHBDC, we do not assume linear motion and thus employ a non-linear

motion prediction network. Furthermore, we perform motion refinement on top of the motion

prediction and do not use the motion residual with an explicit subtraction operation. As our motion

compression network has a similar input-output relation to the SSF [2] model which has frames as

inputs and flow information as output, we have a significant difference from the LHBDC network.

Page 13 of 53

Finally, our motion compression module also transfers the frame fusion mask to the decoder side as

extra information whereas the LHBDC computes the mask using an additional network.

3. System Design

In order to build our video compression model, many trials are performed with different units

such as deformable convolutions instead of bilinear warping with optical flow. In addition, the trials

included working with a composite video compression framework that utilized both predicted-frames

and bidirectional-frames that make use of unidirectional and bidirectional motion information,

respectively. However, our trials with given variations did not yield satisfactory results; thus, our

final trial with bidirectional video compression framework with motion refinement has been chosen

as our best performing network.

As bidirectional video compression networks make use of motion information both in forward

and backward directions in time, they are capable of achieving superior gains over unidirectional

video compression networks. Resulting from this fact, our model achieves a competitive rate-

distortion performance compared to other works in the literature. In the following sections, the basic

building blocks of the model will be illustrated in detail with visual performance evaluations and

architectural details.

3.1. Overview

Our model is composed of four main building blocks. These blocks are motion prediction, motion

compression, learned frame fusion and residual compression modules which allow us to achieve a

high compression rate with a low distortion cost. As each module is composed of differentiable

operations, our model is suitable for end-to-end training using a single loss function.

Similar to work by Yilmaz and Tekalp [4], our work is trained and tested for a group of pictures

of 8 frames and 𝐾 = 3 hierarchical levels as displayed in Figure 7. In the proposed framework, the

first frame of each group of pictures is coded as a keyframe, thus its compression does not make use

of temporal correlation with previous or future frames.

For the keyframe compression, our model utilizes the learned image compression model proposed

by Minnen et al. [7]. However, we do not use the context model that is proposed as it brings a

significant slowdown because of its sequential operation over the pixels of an image. The keyframe

compression model uses a hyperprior network which learns the entropy parameters of a frame and

uses Gaussian distribution for probability modelling. That way, the model is capable of using

arithmetic coding after determining the probability distribution over the pixels of an image.

Page 14 of 53

Figure 7. Coding scheme of the proposed model in a single group of pictures. In a group of pictures,

only the first frame is intra-coded while the rest of the frames are coded in a bidirectional manner.

Figure 8. Overview of the proposed network architecture

After compressing the first frames of two consequent group of pictures using the keyframe

compressor described above, other frames are compressed using our bidirectional compression model

depicted in Figure 8. The keyframes are used as reference frames of the middle frame that relies in

the hierarchical level 𝐾 = 1, for the prediction of motion vectors and current frame. For all other

frames of the group of pictures, we take past and future frames that are in one lower hierarchical level

Page 15 of 53

as the backward and forward reference frames. For each frame, our model uses same parameters in

the inference time. Because there exist seven frames in a group of pictures other than the keyframe,

our model has to run seven times to encode and decode these seven frames. The separate components

that bring increased compression efficiency to our model are described in following sections from

Section 3.2 to Section 3.7.

3.2. Motion Vector Prediction

To reduce the temporal redundancy further and make use of the correlation between frames, we

utilize a motion prediction network that has a U-Net architecture as depicted in Figure 9. Because of

its architecture, the network is capable of learning a multiscale representation of frames and predicting

the motion vectors more accurately.

Figure 9. Motion vector prediction module architecture.

The motion vector prediction module takes two reference frames that are previously decoded and

predicts two motion vectors that are estimated from the past reference frame to current frame and

from the future reference frame to current frame. That way, we reduce the temporal redundancy by

not transmitting the predictions since the coarse parts of the motion vectors are predicted by the

prediction module which is present in both encoder and decoder. Since both the encoder and the

decoder are aware of the prediction, we can transmit the finer details in motion vectors alone at the

motion refinement module.

After predicting the coarse motion vectors which are exemplified in Figure 10, the reference frames

are bilinear warped towards the current frame. These predicted frames are later on passed to the

motion refinement and compression module that performs both compression and refinement.

Page 16 of 53

Figure 10. a) The ground truth current image. b) The motion vectors in forward direction from the

past reference frame to current reference frame. c) The motion vectors in backward direction from

the future reference frame to current reference frame. (Red color depicts motion vectors in the -x

direction while blue color represents motion vectors in the +x direction.)

3.3. Motion Refinement

After predicting the coarse motion vectors with the motion prediction module, the finer details in

the motion vectors are transmitted together with the refining motion compression module present in

Figure 11. The middle layers of the autoencoder architecture has 128 filters to transform the frames

into a latent representation at the encoder and form the motion vectors and the fusion mask later at

the decoder. This module performs both the refinement and motion compression in a similar manner

to the Scale-Space Flow model proposed by Agustsson et al. [2]. The module has the same

architecture as the keyframe compression network proposed by Minnen et al. [7] except the context

model which is not present in our model. In addition, our model utilizes residual blocks in order to

reduce the problem of vanishing gradients and boost the optimization process.

Figure 11. Motion refinement and compression module architecture.

The module takes the predicted frames and the ground truth current frame as its inputs. Thus, the

Page 17 of 53

input layer must be provided with a tensor of 9 channels. After a latent representation is acquired and

passed to the decoder, the decoder yields three separate tensors. These tensors are the two motion

refinement tensors for the backward and forward warping as exemplified in Figure 12 and the fusion

mask in order to fuse the warped frames later on.

Figure 12. a) The ground truth current image. b) The motion refinement vectors in forward direction

from the past reference frame to current reference frame. c) The motion refinement vectors in

backward direction from the future reference frame to current reference frame. (Red color depicts

motion vectors in the -x direction while blue color represents motion vectors in the +x direction.)

3.4. Gain and Inverse Gain Unit

In our motion refinement/motion compression and residual compression modules, one important

component is the gain/inverse gain unit proposed by Cui et al. [6]. Although Cui et al. [6] has

proposed using this component for image compression, our novel aim is to use the same component

for video compression by using in both motion compression network and the residual compression

network. This component allows us to train a single model to cover the complete rate-distortion curve

without performing any additional trainings. Furthermore, the gain and inverse gain units allow us to

form a continuous rate-distortion curve; thus, achieve arbitrary rate-distortion trade-offs without a

major performance loss.

The gain and inverse gain units are simple matrices composed of learned matrices that are used

to scale latent representations before the quantization step. The scaling operation is performed using

the learned scale parameters of the gain and inverse gain units. The gain and inverse gain units are

matrices of 𝑁 × 𝑀 dimensions where N stands for the compression levels that are desired, and M

stands for the number of channels in the latent representation. In that case, the gain and inverse gain

matrices can be thought of N scaling vectors that have M entries.

The scale parameters are paired for the gain and inverse gain units so that a scale vector, 𝑚𝑟 in

the gain unit is only matching with the scale vector, 𝑚𝑟
′ in the inverse gain unit. These scale vectors

are learned per channel and are learned separately for different compression levels. In our framework,

as the middle layer of both modules is composed of 128 filters, the latent representation has 128

Page 18 of 53

channels and the gain and inverse gain units have 𝑀 = 128 learned scale parameters per level.

Using the gain and inverse gain units at the inference time, we are capable of achieving a

continuous rate-distortion curve by performing exponential interpolation to the quantization vectors

that are present in the gain and inverse gain matrices. As the pairing of the gain units and the inverse

gain vectors guarantee that the values of decoded frame and the ground truth frame remain in the

same range, we can choose an arbitrary constant, C, so that the multiplication of every gain and

inverse gain vector equals to C. Using this rule, the exponential interpolation operation can be

described with the following mathematical operation,

where 𝑙 is the interpolation factor between 0 and 1, 𝑚𝑟 and 𝑚𝑡 are gain vectors of neighboring rate-

distortion tradeoff values and their matching inverse gain vectors are 𝑚𝑟
′ and 𝑚𝑡

′ , respectively. That

way, we can come up with interpolated gain and inverse gain vectors such as 𝑚𝑣 and 𝑚𝑣
′ .

Figure 13. Demonstration of channel-wise constant vector, C which is a result of multiplication of

gain and inverse gain matrices.

In Figure 13, we can visualize the multiplication of gain and inverse gain vectors for 4 separate levels

with 128 channels. Following the results on the figure, we can conclude that the assumption that the

multiplication of gain and inverse gain units is equal to a constant arbitrary vector, C, is valid as the

Page 19 of 53

multiplication is almost same for all trade-off levels.

3.5. Learned Frame Fusion

After the motion refinement vectors and the fusion mask are collected from the motion refinement

module, the motion compensation step is performed to acquire a single compensated frame using the

framework depicted in Figure 14. To perform this operation, this module initially applies bilinear

warping to the two previously predicted frames using the motion refinement vectors. The bilinear

warping operation can be represented with the following mathematical representation,

𝜔(𝑥̂𝑡−1, 𝑣𝑡̂)[𝑖, 𝑗] = 𝑥̂𝑡−1 [𝑖 + 𝑣𝑡
𝑥[𝑖, 𝑗], 𝑗 + 𝑣𝑡

𝑦[𝑖, 𝑗]]

where 𝜔(𝑥̂𝑡−1, 𝑣𝑡̂) is the warping operation, 𝑣𝑡̂ is the estimated motion vectors and 𝑥̂𝑡−1 is the

previously decoded frame that is sampled with bilinear interpolation. As the previously predicted

frames only include the coarse motion information, the motion refinement vectors make finer touches

on the frames and improve the frame quality. Subsequently, the final warped frames are fused to each

other using the fusion mask that was the output of the motion refinement and compression module in

Section 3.3. Fusing the two warped frames, we reduce the warping artefacts that were present after

we performed warping two times. The fusion mask that is utilized in this step has the same

dimensionality as our frames and can only take values between 0 and 1 since we apply a sigmoid at

the final layer. That way, we force our model to take the best parts of both frames and fuse them at

uncertain parts of the frame. The fusion operation can be displayed with the following operation.

𝑋𝑡̂ = 𝐾𝑡 × 𝑋𝑝→𝑡̂ + (1 − 𝐾𝑡) × 𝑋𝑓→𝑡̂

where 𝐾𝑡 stands for the fusion mask, 𝑋𝑡̂ stands for the fused frame, 𝑋𝑓→𝑡̂ stands for the backward

refined frame, and 𝑋𝑝→𝑡̂ stands for the forward refined frame.

Figure 14. The diagram of frame fusion with the frame fusion mask after warping the predicted

frames.

Page 20 of 53

3.6. Residual Compression

Finally, the residual frame is acquired by subtracting the motion compensated frame from the

ground truth frame. That way, we achieve a low entropy residual frame that is capable of correcting

the motion compensated frame after it is compressed and decoded back as displayed in Figure 15.

The residual compression module has the same architecture as the motion refinement module that

was presented in Section 3.3. The network again has 128 filters in the middle layers. The difference

from the motion refinement module is that the residual compression network operates on an input

frame which has 3 channels instead of 9 channels of motion refinement module. Furthermore, the

output of the residual compression module is also a frame with 3 channels. The decoded residual

frame is simply added back to the motion compensated frame in order to minimize the distortion on

the output frame. That way, we acquire the desired output frame.

Figure 15. The diagram for the residual compression module.

4. Experiments

4.1. Setup

Our compression network is optimized in an end-to-end manner since it only contains

differentiable components. To setup and optimize the model, PyTorch library [10] is used to provide

a deep learning framework. Furthermore, the pretrained keyframe compression network proposed by

Minnen et al. [7] is taken from the CompressAI library [11] with the name of “mbt2018_mean” and

quality levels of 5, 6, 7, and 8 corresponding to trade-off values of 𝜆 = {845, 1626, 3141, 6060}.

Further details about the environment and library versions can be found in Appendix 9.1.

4.2. Datasets

The bidirectional compression network with motion refinement is trained on the Vimeo-90K [12]

Page 21 of 53

dataset. The specific septuplet dataset has 91,701 videos with seven frames per video at a resolution

of 448 by 256. The dataset is also further augmented by taking different crops of 256 by 256 during

the training time.

To test our model, we encode and decode the video sequences from the UVG dataset [13].

Namely, we utilized our model on the Beauty, Bosphorus, Honeybee, ShakeNDry, Jockey,

ReadySetGo, and YatchRide sequences. For these video sequences, each video has 600 frames except

the shake sequence which has 300 frames. The videos have a spatial resolution of 1920 by 1080 and

a temporal resolution of 120 fps.

4.3. Loss Functions

Our aim for the model is to achieve the maximum frame quality with the minimum number of

bits. Thus, to train our model, a rate-distortion loss function is utilized as following.

𝐿 = 𝜆𝐷 + 𝐻(𝑣𝑚𝑣) + 𝐻(𝑣𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙)

where 𝐷 stands for the distortion present in the decoded frames, 𝑣𝑚𝑣 stands for the latent

representation of the motion vectors of the bidirectional frames and 𝑣𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 stands for the latent

representation of the residual components of the bidirectional frames. The 𝐻(.) operator is for the

entropy calculation of the latent representations and the result of the operator provides the bitrate for

a single frame. The entropy parameters (mean and standard deviation) are calculated by the hyperprior

network present in Motion Compression and Residual Compression modules. As the architecture of

these modules are similar to the network presented by Minnen et al. [7], the probability distribution

of individual pixels is approximated with Gaussian distribution. To achieve different bitrates and

frame qualities, different trade-off values (λ) are used for each rate-distortion level. To optimize the

model parameters, we use two different distortion functions. First of all, we train our model using

mean squared error (MSE),

𝐷(𝑥̂, 𝑥) = 𝑀𝑆𝐸(𝑥̂, 𝑥) =
1

ℎ × 𝑤
∑ (𝑥̂𝑛 − 𝑥𝑛)2

ℎ×𝑤

𝑛=1

where 𝑥̂𝑛 is the decoded pixel, 𝑥𝑛 is the ground truth pixel and ℎ × 𝑤 is the dimensions of the frame.

Later on, the model is additionally finetuned for a second model using Multi-scale Structural

Similarity Method (MS-SSIM) score [14] in order to achieve a result that is more in line with the

human visual system. This score can be expressed with the following diagram in Figure 16,

Page 22 of 53

Figure 16. The diagram to calculate the MS-SSIM loss. The number of levels for our training is

specified as 5.

where 𝑐(.), 𝑠(.), 𝐼𝑀 and the overall loss are expressed as following,

𝑑(𝑥, 𝑦) = [𝑙𝑀(𝑥, 𝑦)]𝛼𝑀 ∏[𝑐𝑗(𝑥, 𝑦)]
𝛽𝑗

[𝑠𝑗(𝑥, 𝑦)]
𝛾𝑗

𝑀

𝑗=1

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦+(𝐾2𝐿)2

𝜎𝑥
2+𝜎𝑦

2+(𝐾2𝐿)2
, 𝑠(𝑥, 𝑦) =

𝜎𝑥𝑦+𝐶2/2

𝜎𝑥𝜎𝑦+𝐶2/2
, 𝑙(𝑥, 𝑦) =

2𝜇𝑥𝜇𝑦+(𝐾1𝐿)2

𝜇𝑥
2+𝜇𝑦

2+(𝐾1𝐿)2

In these equation for the calculation of the MS-SSIM score, x and y are the decoded and ground

truth frames while the α, β and γ are pre-determined values by Wang et al. [14], determining the

relative importance of different scales and components. At the end of the training, the model is tested

in terms of the PSNR and MS-SSIM scores.

4.4. Training Details

For the training, we do not use any pretrained models and optimize the complete model in an end-

to-end manner. The training is performed on an NVIDIA Tesla V100 GPU for 2M iterations. The

training is performed with the Vimeo-90K dataset [12] which provided crops of 256 by 256. For data

augmentation, the crops are randomly selected from various parts of the 256 by 448 frames. At every

5K iterations, we perform validation on our model in order to control the performance on the non-

training data and save the model if it generalizes well. The validation is performed using the first

eight frames of the seven specified videos of the UVG dataset [13]. The network is optimized using

Adam optimizer and initial learning rate is set to 10−4. The learning rate is reduced by a half when

no improvement in validation is observed for 100K iterations.

As the model needs to perform quantization to encode the latent representations, we model this

effect with additive noise during training and perform hard quantization with rounding during test

time. The additive noise that models the effect of rounding has a standard deviation of 0.5 with a

mean of 0.

For our training, we used 𝜆 = {436, 1626, 3141, 6060}.which corresponds to four gain and

Page 23 of 53

inverse gain vector pairs in both the motion refinement and the residual compression modules. Using

these trade-off values and the gain and inverse gain vector pairs, we train a single model for each

hierarchical level of each group of pictures and each quality level. Since the single model is trained

to perform well on different hierarchical and quality levels, our model can successfully generalize to

very different settings. During the training, we formed mini batches of 4 video sequences with 3

consequent frames. With each mini batch, we train all four levels that correspond to a trade-off value

𝜆 and its gain and inverse gain vectors.

5. Analysis and Results

To compare our bidirectional video compression with other networks proposed in the literature,

we provide both quantitative and qualitative comparisons in the following sections. During the tests

our model chooses a group of pictures size of 8 frames. That way we encode 7 frames as bidirectional

frames between every 2 intra-coded frames that were encoded using the model proposed by Minnen

et al. [7] without the context model.

5.1. Quantitative Results

We compare our network quantitatively with the networks proposed in the Related Works and

additionally traditional H.265 video codec [15]. As an anchor, the performance of the SVT-HEVC

codec of H.265 codec is displayed in bidirectional compression mode at very slow preset. Other than

H.265, we compare our network with famous learned video compression networks. These networks

are DVC [1], Scale-Space Flow [2], RLVC [3] and the model proposed by Yilmaz and Tekalp [4].

The performances of the given models are acquired from their repositories provided in GitHub.

To compare our results with the given works, we evaluate them in terms of PSNR and MS-SSIM

scores and plot their rate-distortion curves. The scores are plotted against bits per pixel (bpp) over the

resulting values from testing on UVG dataset [13]. The rate-distortion curves are acquired by linear

interpolation as can be seen in Figure 17 and Figure 18.

Observing Figures 17 and 18, it can be seen that our model displays a superior performance over

other codecs except at lower bitrates. Although our model performs better by a small margin at higher

bitrates, it falls behind of SVT-HEVC codec with very slow preset and the model proposed by Yilmaz

and Tekalp [4]. Other than that, our model achieves a substantial margin against other codecs. As our

model is a developed version of model by Yilmaz and Tekalp [4], our main comparison should be

based on their model.

Page 24 of 53

Figure 17. Rate-Distortion performance comparison with other models in terms of PSNR. The higher

and to the left, the better is the performance.

Figure 18. Rate-Distortion performance comparison with other models in terms of MS-SSIM.

Page 25 of 53

These results are somewhat expected as bidirectional video compression is capable of achieving

superior results compared to unidirectional video compression methods such as DVC [1] and SSF [2]

due to the additional information coming from the backward motion information. However,

comparing with the LHBDC model proposed by Yilmaz and Tekalp [4], the margin is relatively small.

Although our model employs a more complex motion prediction module and performs motion

refinement, the reason behind this fact might be due to the gain and inverse gain units that were not

present in the model by Yilmaz and Tekalp [4]. As our framework is built with the training of a single

model that can perform well at different bitrates, the encoders and decoders are more constrained

compared to the LHBDC model [4].

Furthermore, a secondary reason for the lack of performance at lower bitrates might be the

warping artifacts that occur on the predicted frames. As we apply warping with the refined motions

on the predicted frames, the error from the predicted frames might be propagating and resulting in

worsened frame quality. As there are multiple reasons for the inferior performance at lower bitrates,

the reason for this difference will be investigated by training our model in separate instances without

the gain and inverse gain units and by training a second version of our model which applies the motion

refinement by adding the finer motion vector details onto the predicted motion vectors instead of

applying warping to the predicted frames.

On the other hand, it is important to note that our rate-distortion curves have significantly more

samples on the curve which is a result of adoption of gain and inverse gain units. This result implies

another strength of our model which allows us to achieve a more continuous rate-distortion curve

without training extensive numbers of models.

5.2. Qualitative Results

In addition to comparing our results in quantitative terms, a qualitative analysis is also performed

by comparing the visual quality of decoded frames using our proposed model, an unofficial

implementation of the SSF model [2] and the H.265/x.265 codec [15]. As the previous networks are

not made publicly available, the qualitative comparison can be rather limited.

For comparison, we can observe the decoded frames from the Bosphorus video sequence of the

UVG dataset in Figure 19, we can detect the higher quality of the proposed network both in terms of

the quantitative measures such as the PSNR, PSNR in YCrCb channels and MS-SSIM scores. In all

quantitative measures our proposed model achieves the best results while SSF model [2] comes

second. Furthermore, comparing the details on the waves and the flag on Figure 19, we can detect the

high frequency details more clearly with the proposed model while the results with the SSF and H.265

Page 26 of 53

lack such details.

Figure 19. Qualitative comparison of the proposed model with the Scale-Space Flow model [2] and

x265 codec [15] with slow preset.

6. Conclusion

Our flexible-rate bidirectional video compression network yields a competitive rate-distortion

performance compared to other works in the literature of learned video compression. Although the

model achieves slightly worse frame qualities at lower bitrates, it still remains competitive while

achieving a better rate-distortion performance at higher bitrates when compared using the UVG

dataset [13]. In addition, our model allows us to train a single model to achieve all rate-distortion

trade-off values on the rate-distortion curve whereas other models are doomed to train several

separate networks in order to build a rate-distortion curve and achieve bitrates at different ranges. As

our aim was to build a bidirectional model that performs better in terms of rate-distortion performance

at all bitrates, our design has partially met its goal.

For the future work, we aim to investigate the reasoning behind the inferior performance at the

Page 27 of 53

lower bitrates and perhaps yield an improvement also in the higher bitrates. As the reason for the

inferior results might be the warping artifacts that yield from the frame prediction step and secondary

application of warping on the predicted frames, we aim to propose a new model which sums the

predicted motion vectors and the motion refinements to apply motion compensation only once instead

of twice. We believe that the warping artifacts can be reduced by making such a change.

Furthermore, an ablation study will be performed on the effect of our adoption of gain and inverse

gain units. Although Cui et al. [6] claim that the units have no adversarial effect on the model

performance in image compression, our integration into video compression might be different. For

that reason, we plan to train our model in separate instances at all 4 levels which have been trained in

single training.

Page 28 of 53

7. References

[1] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai and Z. Gao, "DVC: An End-to-end Deep Video

Compression Framework," in Computer Vision and Pattern Recognition (CVPR) 2019, Long

Beach, California, 2019.

[2] E. Agustsson, D. Minnen, N. Johnston, J. Balle, S. J. Hwang and G. Toderici, "Scale-space

flow for end-to-end optimized video compression," in Computer Vision and Pattern

Recognition (CVPR), Virtual, 2020.

[3] R. Yang, F. Mentzer, L. Van Gool and R. Timofte, "Learning for Video Compression With

Recurrent Auto-Encoder and Recurrent Probability Model," IEEE Journal of Selected Topics

in Signal Processing, vol. 15, no. 2, pp. 338-401, 2021.

[4] M. A. Yılmaz and A. M. Tekalp, "End-to-End Rate-Distortion Optimized Learned

Hierarchical Bi-Directional Video Compression," IEEE Transactions on Image Processing,

vol. 31, pp. 974-983, 2021.

[5] Cisco, "Cisco Annual Internet Report (2018–2023) White Paper," 9 March 2020. [Online].

Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-

internet-report/white-paper-c11-741490.html. [Accessed 10 October 2021].

[6] Z. Cui, J. Wang, S. Gao, T. Guo, Y. Feng and B. Bai, "Asymmetric Gained Deep Image

Compression With Continuous Rate Adaptation," in Conference on Computer Vision and

Pattern Recognition (CVPR), Virtual, 2021.

[7] D. Minnen, J. Balle and G. Toderici, "Joint autoregressive and hierarchical priors for learned

image compression," in NeurIPS, Montreal, 2018.

[8] Z. Cheng, H. Sun, Takeuchi and J. Katto, "Learned Image Compression with Discretized

Gaussian Mixture Likelihoods and Attention Modules," in IEEE Computer Vision and Pattern

Recognition (CVPR), Seattle, 2020.

[9] A. Ranjan and M. Black, "Optical Flow Estimation using a Spatial Pyramid Network," in

CVPR 2017, 2017.

[10] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. L. Z. DeVito, A. Desmaison, L.

Antiga and A. Lerer, "Automatic differentiation in PyTorch," in NeurIPS 2017, California,

2017.

[11] J. Begaint, F. Racape, S. Feltman and A. Pushparaja, "CompressAI: a PyTorch library and

evaluation platform for end-to-end compression research," arXiv preprint arXiv:2011.03029,

2020.

[12] T. Xue, B. Chen, J. Wu, D. Wei and W. Freeman, "Video Enhancement with Task-Oriented

Flow," International Journal of Computer Vision, vol. 127, no. 8, pp. 1106-1125, 2019.

[13] A. Mercat, M. Viitanen and J. Vanne, "UVG dataset: 50/120fps 4K sequences for video codec

analysis and development," in ACM Multimedia Syst. Conf., Istanbul, 2020.

[14] Z. Wang, E. Simoncelli and A. Bovik, "Multi-Scale Structural Similarity for Image Quality

Assessment," in IEEE Asilomar Conference on Signals, Systems and Computers, 2003.

[15] G. J. Sullivan, J.-R. Ohm, W.-J. Han and T. Wiegand, "Overview of the High Efficiency

Video Coding (HEVC) Standard," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 22, no. 22, pp. 1649-1668, 2012.

[16] L. Haopeng, Y. Yuan and W. Qi, "Video Frame Interpolation Via Residue Refinement," in

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

Barcelona, 2020.

Page 29 of 53

8. Appendices

8.1. Environment (.yml file)

name: icip2022

channels:

 - pytorch

 - anaconda

 - conda-forge

 - defaults

dependencies:

 - _libgcc_mutex=0.1=main

 - anyio=2.0.2=py38h578d9bd_4

 - argon2-cffi=20.1.0=py38h25fe258_2

 - async_generator=1.10=py_0

 - attrs=20.3.0=pyhd3deb0d_0

 - babel=2.9.0=pyhd3deb0d_0

 - backcall=0.2.0=pyh9f0ad1d_0

 - backports=1.0=py_2

 - backports.functools_lru_cache=1.6.1=py_0

 - blas=1.0=mkl

 - bleach=3.2.2=pyh44b312d_0

 - brotlipy=0.7.0=py38h8df0ef7_1001

 - ca-certificates=2020.12.5=ha878542_0

 - certifi=2020.12.5=py38h578d9bd_1

 - cffi=1.14.4=py38h261ae71_0

 - chardet=4.0.0=py38h578d9bd_1

 - cryptography=3.3.1=py38h3c74f83_0

 - cudatoolkit=11.0.221=h6bb024c_0

 - decorator=4.4.2=py_0

 - defusedxml=0.6.0=py_0

 - entrypoints=0.3=pyhd8ed1ab_1003

 - freetype=2.10.4=h5ab3b9f_0

 - idna=2.10=pyh9f0ad1d_0

 - imageio=2.9.0=py_0

 - importlib-metadata=3.4.0=py38h578d9bd_0

 - importlib_metadata=3.4.0=hd8ed1ab_0

 - intel-openmp=2020.2=254

 - ipykernel=5.4.3=py38h81c977d_0

 - ipython=7.12.0=py38h5ca1d4c_0

 - ipython_genutils=0.2.0=py_1

 - jedi=0.18.0=py38h578d9bd_2

 - jinja2=2.11.2=pyh9f0ad1d_0

 - jpeg=9b=h024ee3a_2

 - json5=0.9.5=pyh9f0ad1d_0

 - jsonschema=3.2.0=py_2

 - jupyter_client=6.1.11=pyhd8ed1ab_1

 - jupyter_core=4.7.0=py38h578d9bd_1

 - jupyter_server=1.2.2=py38h578d9bd_1

 - jupyterlab=3.0.5=pyhd8ed1ab_0

 - jupyterlab_pygments=0.1.2=pyh9f0ad1d_0

Page 30 of 53

 - jupyterlab_server=2.1.2=pyhd8ed1ab_0

 - lcms2=2.11=h396b838_0

 - ld_impl_linux-64=2.33.1=h53a641e_7

 - libedit=3.1.20191231=h14c3975_1

 - libffi=3.3=he6710b0_2

 - libgcc-ng=9.1.0=hdf63c60_0

 - libgfortran-ng=7.3.0=hdf63c60_0

 - libpng=1.6.37=hbc83047_0

 - libsodium=1.0.18=h36c2ea0_1

 - libstdcxx-ng=9.1.0=hdf63c60_0

 - libtiff=4.1.0=h2733197_1

 - libuv=1.40.0=h7b6447c_0

 - lz4-c=1.9.3=h2531618_0

 - markupsafe=1.1.1=py38h8df0ef7_2

 - mistune=0.8.4=py38h25fe258_1002

 - mkl=2020.2=256

 - mkl-service=2.3.0=py38he904b0f_0

 - mkl_fft=1.2.0=py38h23d657b_0

 - mkl_random=1.1.1=py38h0573a6f_0

 - natsort=7.0.1=py_0

 - nbclassic=0.2.6=pyhd8ed1ab_0

 - nbclient=0.5.1=py_0

 - nbconvert=6.0.7=py38h578d9bd_3

 - nbformat=5.1.2=pyhd8ed1ab_1

 - ncurses=6.2=he6710b0_1

 - nest-asyncio=1.4.3=pyhd8ed1ab_0

 - ninja=1.10.2=py38hff7bd54_0

 - notebook=6.2.0=py38h578d9bd_0

 - numpy=1.19.2=py38h54aff64_0

 - numpy-base=1.19.2=py38hfa32c7d_0

 - olefile=0.46=py_0

 - openssl=1.1.1i=h27cfd23_0

 - packaging=20.8=pyhd3deb0d_0

 - pandoc=2.11.3.2=h7f98852_0

 - pandocfilters=1.4.2=py_1

 - parso=0.8.1=pyhd8ed1ab_0

 - pexpect=4.8.0=pyh9f0ad1d_2

 - pickleshare=0.7.5=py_1003

 - pillow=8.1.0=py38he98fc37_0

 - pip=20.3.3=py38h06a4308_0

 - prometheus_client=0.9.0=pyhd3deb0d_0

 - prompt-toolkit=3.0.11=pyha770c72_0

 - prompt_toolkit=3.0.11=hd8ed1ab_0

 - ptyprocess=0.7.0=pyhd3deb0d_0

 - pycparser=2.20=pyh9f0ad1d_2

 - pygments=2.7.4=pyhd8ed1ab_0

 - pyopenssl=20.0.1=pyhd8ed1ab_0

 - pyparsing=2.4.7=pyh9f0ad1d_0

 - pyrsistent=0.17.3=py38h25fe258_1

 - pysocks=1.7.1=py38h578d9bd_3

Page 31 of 53

 - python=3.8.5=h7579374_1

 - python-dateutil=2.8.1=py_0

 - python_abi=3.8=1_cp38

 - pytorch=1.7.1=py3.8_cuda11.0.221_cudnn8.0.5_0

 - pytz=2020.5=pyhd8ed1ab_0

 - pyzmq=20.0.0=py38h1d1b12f_1

 - readline=8.0=h7b6447c_0

 - requests=2.25.1=pyhd3deb0d_0

 - scipy=1.5.2=py38h0b6359f_0

 - send2trash=1.5.0=py_0

 - setuptools=51.3.3=py38h06a4308_4

 - six=1.15.0=py38h06a4308_0

 - sniffio=1.2.0=py38h578d9bd_1

 - sqlite=3.33.0=h62c20be_0

 - terminado=0.9.2=py38h578d9bd_0

 - testpath=0.4.4=py_0

 - tk=8.6.10=hbc83047_0

 - torchaudio=0.7.2=py38

 - torchvision=0.8.2=py38_cu110

 - tornado=6.1=py38h25fe258_0

 - traitlets=5.0.5=py_0

 - typing_extensions=3.7.4.3=py_0

 - urllib3=1.26.2=pyhd8ed1ab_0

 - wcwidth=0.2.5=pyh9f0ad1d_2

 - webencodings=0.5.1=py_1

 - wheel=0.36.2=pyhd3eb1b0_0

 - xz=5.2.5=h7b6447c_0

 - zeromq=4.3.3=h58526e2_3

 - zipp=3.4.0=py_0

 - zlib=1.2.11=h7b6447c_3

 - zstd=1.4.5=h9ceee32_0

 - pip:

 - cupy-cuda110==8.5.0

 - cycler==0.10.0

 - fastrlock==0.5

 - kiwisolver==1.3.1

 - matplotlib==3.3.3

 - pytorch-msssim==0.2.0

prefix: /scratch/users/ecetin17/.conda/envs/icip2022

8.2. U-Net Code [16]

import torch

from torch import nn

import torch.nn.functional as F

Adapted from "Tunable U-Net implementation in PyTorch"

https://github.com/jvanvugt/pytorch-unet

class UNet(nn.Module):

 def __init__(self, in_channels=1, out_channels=2, depth=5, wf=5,

padding=True):

 super(UNet, self).__init__()

Page 32 of 53

 self.padding = padding

 self.depth = depth

 prev_channels = in_channels

 self.down_path = nn.ModuleList()

 for i in range(depth):

 self.down_path.append(

 UNetConvBlock(prev_channels, 2 ** (wf + i), padding)

)

 prev_channels = 2 ** (wf + i)

 self.midconv = nn.Conv2d(prev_channels, prev_channels, kernel_size=3,

padding=1)

 self.up_path = nn.ModuleList()

 for i in reversed(range(depth - 1)):

 self.up_path.append(

 UNetUpBlock(prev_channels, 2 ** (wf + i), padding)

)

 prev_channels = 2 ** (wf + i)

 self.last = nn.Conv2d(prev_channels, out_channels,

kernel_size=3,padding=1)

 def forward(self, x):

 blocks = []

 for i, down in enumerate(self.down_path):

 x = down(x)

 if i != len(self.down_path) - 1:

 blocks.append(x)

 x = F.avg_pool2d(x, 2)

 x = F.leaky_relu(self.midconv(x), negative_slope = 0.1)

 for i, up in enumerate(self.up_path):

 x = up(x, blocks[-i - 1])

 return self.last(x)

class UNetConvBlock(nn.Module):

 def __init__(self, in_size, out_size, padding):

 super(UNetConvBlock, self).__init__()

 block = []

 block.append(nn.Conv2d(in_size, out_size, kernel_size=3,

padding=int(padding)))

 block.append(nn.LeakyReLU(0.1))

 block.append(nn.Conv2d(out_size, out_size, kernel_size=3,

padding=int(padding)))

 block.append(nn.LeakyReLU(0.1))

 self.block = nn.Sequential(*block)

 def forward(self, x):

 out = self.block(x)

 return out

class UNetUpBlock(nn.Module):

 def __init__(self, in_size, out_size, padding):

 super(UNetUpBlock, self).__init__()

 self.up = nn.Sequential(

 nn.Upsample(mode='bilinear', scale_factor=2),

 nn.Conv2d(in_size, out_size, kernel_size=3, padding=1),

)

 self.conv_block = UNetConvBlock(in_size, out_size, padding)

Page 33 of 53

 def center_crop(self, layer, target_size):

 _, _, layer_height, layer_width = layer.size()

 diff_y = (layer_height - target_size[0]) // 2

 diff_x = (layer_width - target_size[1]) // 2

 return layer[

 :, :, diff_y : (diff_y + target_size[0]), diff_x : (diff_x +

target_size[1])

]

 def forward(self, x, bridge):

 up = self.up(x)

 crop1 = self.center_crop(bridge, up.shape[2:])

 out = torch.cat((up, crop1), 1)

 out = self.conv_block(out)

 return out

8.3. Layers Code

import torch

import torch.nn as nn

import torch.nn.functional as F

from compressai.models import MeanScaleHyperprior

from compressai.models.utils import conv, deconv

from compressai.layers import (

 GDN,

 AttentionBlock,

 ResidualBlock,

 ResidualBlockUpsample,

 ResidualBlockWithStride,

 conv3x3,

 subpel_conv3x3,

)

def conv(in_channels, out_channels, kernel_size=5, stride=2):

 return nn.Conv2d(

 in_channels,

 out_channels,

 kernel_size=kernel_size,

 stride=stride,

 padding=kernel_size // 2,

)

def deconv(in_channels, out_channels, kernel_size=5, stride=2):

 return nn.ConvTranspose2d(

 in_channels,

 out_channels,

 kernel_size=kernel_size,

 stride=stride,

 output_padding=stride - 1,

 padding=kernel_size // 2,

)

class Gain_Module(nn.Module):

 def __init__(self, n=6, N=128, bias=False, inv=False):

 """

 n: number of scales for quantization levels

 N: number of channels

 """

 super(Gain_Module, self).__init__()

 self.gain_matrix = nn.Parameter(torch.ones(n, N))

Page 34 of 53

 self.bias = bias

 if bias:

 self.bias = nn.Parameter(torch.ones(N))

 def forward(self, x, n=None, l=1):

 B, C, H, W = x.shape

 # If we want to find a non-trained rate-distortion point

 if (l != 1):

 gain1 = self.gain_matrix[n]

 gain2 = self.gain_matrix[[n[0]+1]]

 gain = (torch.abs(gain1)**l)*(torch.abs(gain2)**(1-l))

 else:

 gain = torch.abs(self.gain_matrix[n])

 reshaped_gain = gain.unsqueeze(2).unsqueeze(3)

 rescaled_latent = reshaped_gain * x

 if self.bias:

 rescaled_latent += self.bias[n]

 return rescaled_latent

class FlowCompressor(MeanScaleHyperprior):

 def __init__(self, n=6, in_ch=9, out_ch=5, N=128, bias=False, **kwargs):

 super().__init__(N=N, M=N, **kwargs)

 self.g_a = nn.Sequential(

 ResidualBlockWithStride(in_ch, N, stride=2),

 ResidualBlock(N, N),

 ResidualBlockWithStride(N, N, stride=2),

 ResidualBlock(N, N),

 ResidualBlockWithStride(N, N, stride=2),

 ResidualBlock(N, N),

 conv3x3(N, N, stride=2),

)

 self.h_a = nn.Sequential(

 conv3x3(N, N),

 nn.LeakyReLU(inplace=True),

 conv3x3(N, N),

 nn.LeakyReLU(inplace=True),

 conv3x3(N, N, stride=2),

 nn.LeakyReLU(inplace=True),

 conv3x3(N, N),

 nn.LeakyReLU(inplace=True),

 conv3x3(N, N, stride=2),

)

 self.h_s = nn.Sequential(

 conv3x3(N, N),

 nn.LeakyReLU(inplace=True),

 subpel_conv3x3(N, N, 2),

 nn.LeakyReLU(inplace=True),

 conv3x3(N, N * 3 // 2),

 nn.LeakyReLU(inplace=True),

 subpel_conv3x3(N * 3 // 2, N * 3 // 2, 2),

 nn.LeakyReLU(inplace=True),

 conv3x3(N * 3 // 2, N * 2),

)

Page 35 of 53

 self.g_s = nn.Sequential(

 ResidualBlock(N, N),

 ResidualBlockUpsample(N, N, 2),

 ResidualBlock(N, N),

 ResidualBlockUpsample(N, N, 2),

 ResidualBlock(N, N),

 ResidualBlockUpsample(N, N, 2),

 ResidualBlock(N, N),

 subpel_conv3x3(N, out_ch, 2),

)

 self.g_s[-1][0].weight.data.fill_(0.0)

 self.g_s[-1][0].bias.data.fill_(0.0)

 self.gain_unit = Gain_Module(n=n, N=N, bias=bias, inv=False)

 self.inv_gain_unit = Gain_Module(n=n, N=N, bias=bias, inv=True)

 self.hyper_gain_unit = Gain_Module(n=n, N=N, bias=bias, inv=False)

 self.hyper_inv_gain_unit = Gain_Module(n=n, N=N, bias=bias, inv=True)

 def forward(self, x, n=None, l=None, train=False):

 self.training = train

 y = self.g_a(x)

 scaled_y = self.gain_unit(y, n, l)

 z = self.h_a(scaled_y)

 scaled_z = self.hyper_gain_unit(z, n, l)

 z_hat, z_likelihoods = self.entropy_bottleneck(scaled_z)

 scaled_z_hat = self.hyper_inv_gain_unit(z_hat, n, l)

 gaussian_params = self.h_s(scaled_z_hat)

 scales_hat, means_hat = gaussian_params.chunk(2, 1)

 y_hat, y_likelihoods = self.gaussian_conditional(scaled_y, scales_hat,

means=means_hat)

 scaled_y_hat = self.inv_gain_unit(y_hat, n, l)

 x_hat = self.g_s(scaled_y_hat)

 return {

 "x_hat": x_hat,

 "likelihoods": {"y": y_likelihoods, "z": z_likelihoods},

 }

class ResidualCompressor(MeanScaleHyperprior):

 def __init__(self, n=6, in_ch=3, N=128, bias=False, **kwargs):

 super().__init__(N=N, M=N, **kwargs)

 self.g_a = nn.Sequential(

 ResidualBlockWithStride(in_ch, N, stride=2),

 ResidualBlock(N, N),

 ResidualBlockWithStride(N, N, stride=2),

 ResidualBlock(N, N),

 ResidualBlockWithStride(N, N, stride=2),

 ResidualBlock(N, N),

 conv3x3(N, N, stride=2),

)

 self.h_a = nn.Sequential(

 conv3x3(N, N),

 nn.LeakyReLU(inplace=True),

 conv3x3(N, N),

 nn.LeakyReLU(inplace=True),

 conv3x3(N, N, stride=2),

 nn.LeakyReLU(inplace=True),

Page 36 of 53

 conv3x3(N, N),

 nn.LeakyReLU(inplace=True),

 conv3x3(N, N, stride=2),

)

 self.h_s = nn.Sequential(

 conv3x3(N, N),

 nn.LeakyReLU(inplace=True),

 subpel_conv3x3(N, N, 2),

 nn.LeakyReLU(inplace=True),

 conv3x3(N, N * 3 // 2),

 nn.LeakyReLU(inplace=True),

 subpel_conv3x3(N * 3 // 2, N * 3 // 2, 2),

 nn.LeakyReLU(inplace=True),

 conv3x3(N * 3 // 2, N * 2),

)

 self.g_s = nn.Sequential(

 ResidualBlock(N, N),

 ResidualBlockUpsample(N, N, 2),

 ResidualBlock(N, N),

 ResidualBlockUpsample(N, N, 2),

 ResidualBlock(N, N),

 ResidualBlockUpsample(N, N, 2),

 ResidualBlock(N, N),

 subpel_conv3x3(N, in_ch, 2),

)

 self.gain_unit = Gain_Module(n=n, N=N, bias=bias, inv=False)

 self.inv_gain_unit = Gain_Module(n=n, N=N, bias=bias, inv=True)

 self.hyper_gain_unit = Gain_Module(n=n, N=N, bias=bias, inv=False)

 self.hyper_inv_gain_unit = Gain_Module(n=n, N=N, bias=bias, inv=True)

 def forward(self, x, n=None, l=None, train=False):

 self.training = train

 y = self.g_a(x)

 scaled_y = self.gain_unit(y, n, l)

 z = self.h_a(scaled_y)

 scaled_z = self.hyper_gain_unit(z, n, l)

 z_hat, z_likelihoods = self.entropy_bottleneck(scaled_z)

 scaled_z_hat = self.hyper_inv_gain_unit(z_hat, n, l)

 gaussian_params = self.h_s(scaled_z_hat)

 scales_hat, means_hat = gaussian_params.chunk(2, 1)

 y_hat, y_likelihoods = self.gaussian_conditional(scaled_y, scales_hat,

means=means_hat)

 scaled_y_hat = self.inv_gain_unit(y_hat, n, l)

 x_hat = self.g_s(scaled_y_hat)

 return {

 "x_hat": x_hat,

 "likelihoods": {"y": y_likelihoods, "z": z_likelihoods},

 }

8.4. Model Code

import torch

import torch.nn as nn

import torch.nn.functional as F

import torchvision.ops.deform_conv as df

import time

import math

Page 37 of 53

from compressai.models import MeanScaleHyperprior

from compressai.models.utils import conv, deconv

from compressai.layers import GDN

from .layers import FlowCompressor, ResidualCompressor

from .unet import UNet

device = torch.device("cuda")

class BidirFlowRef(nn.Module):

 """

 Bidirectional Compression with Flow Refinement

 """

 def __init__(self, n=6, N=128):

 super(BidirFlowRef, self).__init__()

 self.flow_predictor = UNet(in_channels=6, out_channels=4, depth=5, wf=5,

padding=True)

 self.flow_compressor = FlowCompressor(n=n, in_ch=9, out_ch=5, N=N,

bias=False)

 self.residual_compressor = ResidualCompressor(n=n, in_ch=3, N=N,

bias=False)

 def forward(self, x_before, x_current, x_after, n=None, l=1, train=False):

 _, _, H, W = x_current.shape

 num_pixels = H * W

 enc_start = time.perf_counter()

 pred_input = torch.cat((x_before, x_after), dim=1)

 mv_pred = self.flow_predictor(pred_input)

 mv_before, mv_after = torch.chunk(mv_pred, 2, dim=1)

 x_before_pred = self.backwarp(x_before, mv_before)

 x_after_pred = self.backwarp(x_after, mv_after)

 x_input = torch.cat((x_current, x_before_pred, x_after_pred), dim=1)

 flow_result = self.flow_compressor(x_input, n, l, train)

 flow_hat = flow_result["x_hat"]

 dec_start = time.perf_counter()

 mv_before_refined = flow_hat[:, :2, :, :]

 mv_after_refined = flow_hat[:, 2:4, :, :]

 beta = F.sigmoid(flow_hat[:, 4:, :, :])

 x_comp = beta * self.backwarp(x_before_pred, mv_before_refined) + (1 -

beta) * self.backwarp(x_after_pred, mv_after_refined)

 dec_mid = time.perf_counter()

 dec_time = dec_mid - dec_start

 residual = x_current - x_comp

 residual_result = self.residual_compressor(residual, n, l, train)

 enc_end = time.perf_counter()

Page 38 of 53

 enc_time = enc_end - enc_start

 residual_hat = residual_result["x_hat"]

 dec_mid_start = time.perf_counter()

 x_hat = x_comp + residual_hat

 dec_mid_end = time.perf_counter()

 dec_time += (dec_mid_end - dec_mid_start)

 size_flow = sum(

 (torch.log(likelihoods).sum(dim=(1, 2, 3)) / (-math.log(2)))

 for likelihoods in flow_result["likelihoods"].values()

)

 rate_flow = size_flow / num_pixels

 size_residual = sum(

 torch.log(likelihoods).sum(dim=(1, 2, 3)) / (-math.log(2))

 for likelihoods in residual_result["likelihoods"].values()

)

 rate_residual = size_residual / num_pixels

 return {

 "x_hat": x_hat,

 "x_before_pred": x_before_pred,

 "x_after_pred": x_after_pred,

 "mv_before": mv_before,

 "mv_after": mv_after,

 "mv_before_refined": mv_before_refined,

 "mv_after_refined": mv_after_refined,

 "beta": beta,

 "x_before_refined": self.backwarp(x_before_pred, mv_before_refined),

 "x_after_refined": self.backwarp(x_after_pred, mv_after_refined),

 "x_comp": x_comp,

 "residual": residual_hat,

 "size": size_flow + size_residual,

 "rate": rate_flow + rate_residual,

 "enc_time": enc_time,

 "dec_time": dec_time

 }

 def backwarp(self, tenInput, tenFlow):

 tenHor = torch.linspace(-1.0 + (1.0 / tenFlow.shape[3]), 1.0 - (1.0 /

tenFlow.shape[3]),

 tenFlow.shape[3]).view(1, 1, 1, -1).expand(-1, -1,

tenFlow.shape[2], -1)

 tenVer = torch.linspace(-1.0 + (1.0 / tenFlow.shape[2]), 1.0 - (1.0 /

tenFlow.shape[2]),

 tenFlow.shape[2]).view(1, 1, -1, 1).expand(-1, -1, -

1, tenFlow.shape[3])

 backwarp_tenGrid = torch.cat([tenHor, tenVer], 1).to(device)

 # end

 tenFlow = torch.cat([tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0)

/ 2.0),

 tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) /

2.0)], 1)

 return torch.nn.functional.grid_sample(input=tenInput,

 grid=(backwarp_tenGrid +

Page 39 of 53

tenFlow).permute(0, 2, 3, 1),

 mode='bilinear',

padding_mode='border', align_corners=False)

8.5. Utility Code

import torch

from torch import optim

import numpy as np

from natsort import natsorted

import glob

import random

import sys

import imageio

import math

import torch.nn as nn

import logging

def normalize(tensor):

 norm = (tensor) / 255.

 return norm

def float_to_uint8(image):

 clip = torch.clamp(image, 0., 1.) * 255.

 im_uint8 = torch.round(clip).type(torch.uint8)

 return im_uint8

def MSE(gt, pred):

 mse = torch.mean((gt - pred) ** 2)

 return mse

def PSNR(mse, data_range):

 psnr = 10 * torch.log10((data_range ** 2) / mse)

 return psnr

def calculate_distortion_loss(out, real, dim):

 """Mean Squared Error"""

 distortion_loss = torch.mean((out - real) ** 2, dim=dim)

 return distortion_loss

def pad(im):

 """Padding to fix size at validation"""

 (b, c, w, h) = im.size()

 p1 = (64 - (w % 64)) % 64

 p2 = (64 - (h % 64)) % 64

 pad = nn.ReflectionPad2d(padding=(0, p2, 0, p1))

 return pad(im).squeeze(0)

Training & Test Video & Image Datasets

from torch.utils.data import Dataset

def tensor_crop(frames, patch_size, rng):

 """

 Crop frames according to the patch size

 Output is a numpy array

 """

 X_train = []

 sample_im = imageio.imread(frames[0])

 x = rng.randint(0, sample_im.shape[1] - patch_size)

Page 40 of 53

 y = rng.randint(0, sample_im.shape[0] - patch_size)

 for k in range(len(frames)):

 img = imageio.imread(frames[k])

 img_cropped = img[y:y + patch_size, x:x + patch_size]

 img_cropped = img_cropped.transpose(2, 0, 1)

 if k == 0:

 img_concat = np.array(img_cropped)

 else:

 img_concat = np.concatenate((img_concat, img_cropped), axis=0)

 return img_concat

class VimeoTrainDataset(Dataset):

 """Dataset for custom vimeo"""

 def __init__(self, data_path, patch_size, gop_size, skip_frames, num_frames,

rng, dtype=".png"):

 """

 data_path: path to folders of videos,

 patch_size: size to crop for training,

 gop_size: GoP size,

 skip_frames: do we skip frames (int),

 num_frames: whether we limit the number of frames in the GoP,

 rng: random number generator,

 dype: png or jpeg

 """

 self.data_path = data_path

 # Pick the videos with sufficient resolution

 videos = []

 folders = natsorted(glob.glob(data_path + "*"))

 for folder in folders:

 videos += natsorted(glob.glob(folder + "/*"))

 self.videos = videos

 self.patch_size = patch_size

 self.gop_size = gop_size

 self.skip_frames = skip_frames

 self.dtype = dtype

 # Random number generator for reproducability

 self.rng = rng

 # How many frames to take

 if num_frames:

 self.num_frames = num_frames

 else:

 self.num_frames = (self.gop_size // self.skip_frames) + 1

 self.dataset_size = len(self.videos)

 def __len__(self):

 return self.dataset_size

 def __getitem__(self, item):

 video = self.videos[item]

 video_im_list = natsorted(glob.glob(video + "/*." + self.dtype))

Page 41 of 53

 length = len(video_im_list)

 s = self.rng.randint(0, length - 1 - (self.num_frames - 1) *

self.skip_frames)

 video_split = video_im_list[s:s + self.skip_frames *

self.num_frames:self.skip_frames]

 video_split = tensor_crop(video_split, self.patch_size, self.rng)

 video_split = normalize(video_split)

 return video_split

class UVGTestDataset(Dataset):

 """Dataset for UVG"""

 def __init__(self, data_path, video_names, gop_size, skip_frames,

test_size=2):

 """

 data_path: path to folders of videos,

 video_name: video name (e.g. beauty),

 skip_frames: do we skip frames (int, e.g. 1),

 """

 # Get the frame paths for each frame

 self.data_path = data_path

 self.skip_frames = skip_frames

 self.gop_size = gop_size

 self.test_size = test_size

 self.frames = []

 for video_name in video_names:

 video = data_path + video_name

 frames = natsorted(glob.glob(video +

"/*.png"))[:test_size*gop_size+1]

 for idx, frame in enumerate(frames):

 self.frames.append(frame)

 if (idx % gop_size == 0) and (idx != 0) and (idx // gop_size !=

test_size):

 self.frames.append(frame)

 self.dataset_size = len(self.frames)

 self.orig_img_size = imageio.imread(self.frames[0]).shape

 def __len__(self):

 return self.dataset_size

 def __getitem__(self, item):

 frame = self.frames[item]

 im = imageio.imread(frame).transpose(2, 0, 1)

 im = normalize(torch.from_numpy(im)).unsqueeze(0)

 im = pad(im)

 return im

class KodakTestDataset(Dataset):

 """Dataset for Kodak"""

 def __init__(self, data_path):

 """

 data_path: path to folders of videos,

 video_name: video name (e.g. beauty),

 skip_frames: do we skip frames (int, e.g. 1),

Page 42 of 53

 """

 # Get the frame paths for each frame

 self.data_path = data_path

 self.images = natsorted(glob.glob(self.data_path + "*.png"))

 def __len__(self):

 return len(self.images)

 def __getitem__(self, item):

 im = self.images[item]

 im = imageio.imread(im).transpose(2, 0, 1)

 im = normalize(torch.from_numpy(im))

 return im

I-Frame image compressor

def image_compress(im, compressor):

 out = compressor(im)

 dec = out["x_hat"]

 size_image = sum(

 (torch.log(likelihoods).sum() / (-math.log(2)))

 for likelihoods in out["likelihoods"].values()

)

 return dec, size_image

Save and load model

def save_model(model, optimizer, aux_optimizer, scheduler, num_iter, exceptions,

save_name="checkpoint.pth"):

 """

 Save a model with its optimizer, aux_optimizer, scheduler and # of iteration

info.

 If some of them are not desired, give None as input instead of it

 """

 save_dict = {}

 if optimizer:

 save_dict["optimizer"] = optimizer.state_dict()

 if aux_optimizer:

 save_dict["aux_optimizer"] = aux_optimizer.state_dict()

 if scheduler:

 save_dict["scheduler"] = scheduler.state_dict()

 if num_iter:

 save_dict["iter"] = num_iter

 for child, module in model.named_children():

 # If we don't want to save a child, we skip it

 if child in exceptions:

 continue

 save_dict[child] = module.state_dict()

 logging.info("Saved " + child + " at " + save_name)

 torch.save(save_dict, save_name)

def load_model(model, pretrained_dict, exceptions):

 """

 Load the model parameters from a dictionary. The dictionary must have key

names same

 as the model attributes (which are submodules). The save_model() function is

Page 43 of 53

designed

 to be matching with this function.

 """

 model_child_names = [name for name, _ in model.named_children()]

 for name, submodule in pretrained_dict.items():

 # If we don't want to load a module, we skip it

 if name in exceptions:

 continue

 if name in model_child_names:

 message = getattr(model, name).load_state_dict(submodule)

 logging.info(name + ": " + str(message))

 return model

def configure_seeds(random_seed=None, torch_seed=None):

 if random_seed is None:

 random_seed = random.randrange(sys.maxsize)

 if torch_seed is None:

 torch_seed = torch.seed()

 else:

 torch.manual_seed(torch_seed)

 rng = random.Random(random_seed)

 logging.info("Random library seed: " + str(random_seed))

 logging.info("PyTorch library seed: " + str(torch_seed))

 return rng

def configure_optimizers(model, args):

 """Separate parameters for the main optimizer and the auxiliary optimizer.

 Return two optimizers"""

 # Use list of tuples instead of dict to be able to later check the elements

are unique and there is no intersection

 parameters = []

 aux_parameters = []

 parameter_dict = {}

 for name, param in model.named_parameters():

 parameter_dict[name] = param

 if not name.endswith(".quantiles"):

 parameters.append((name, param))

 else:

 aux_parameters.append((name, param))

 aux_param_set = set(p for n, p in aux_parameters)

 num_aux_params = sum([np.prod(p.size()) for p in aux_param_set])

 logging.info("There are " + str(num_aux_params) + " aux_parameters")

 # Make sure we don't have an intersection of parameters

 parameters_name_set = set(n for n,p in parameters)

 aux_parameters_name_set = set(n for n, p in aux_parameters)

 assert len(parameters) == len(parameters_name_set)

 assert len(aux_parameters) == len(aux_parameters_name_set)

 inter_params = parameters_name_set & aux_parameters_name_set

 union_params = parameters_name_set | aux_parameters_name_set

 assert len(inter_params) == 0

 assert len(union_params) - len(parameter_dict.keys()) == 0

 optimizer = optim.Adam((p for (n, p) in parameters if p.requires_grad),

 lr=args.learning_rate)

 aux_optimizer = optim.Adam((p for (n, p) in aux_parameters if

Page 44 of 53

p.requires_grad),

 lr=args.aux_learning_rate)

 scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min',

factor=0.5,

 patience=args.patience,

min_lr=args.min_lr)

 return optimizer, aux_optimizer, scheduler

def load_optimizer(pretrained_dict, device, optimizer, aux_optimizer=None):

 """

 Load the optimizer parameters from a dictionary that was saved using the

save_model()

 function.

 """

 message = optimizer.load_state_dict(pretrained_dict["optimizer"])

 logging.info("Optimizer: " + str(message))

 if aux_optimizer:

 aux_optimizer.load_state_dict(pretrained_dict["aux_optimizer"])

 logging.info("Aux Optimizer: " + str(message))

 return optimizer, aux_optimizer

Info passing during training and validation

class Infographic():

 """

 Build a logging class to save & load the training results

 """

 def __init__(self):

 self.step_train_dist_loss = 0

 self.step_train_rate_loss = 0

 self.step_train_loss = 0

 self.avg_psnr_dec = 0

 self.avg_bpp = 0

 self.avg_val_loss = 0

 self.best_val_loss = 10**10

 self.psnr_dec_at_best_loss = -1

 self.bpp_at_best_loss = -1

 def update_train_info(self, distortion_loss, rate_loss, loss):

 self.step_train_dist_loss += distortion_loss

 self.step_train_rate_loss += rate_loss

 self.step_train_loss += loss

 def zero_train_info(self):

 self.step_train_dist_loss = 0

 self.step_train_rate_loss = 0

 self.step_train_loss = 0

 def update_val_info(self, avg_val_loss, avg_psnr, avg_bpp):

 self.avg_val_loss = avg_val_loss

 self.avg_psnr_dec = avg_psnr

 self.avg_bpp = avg_bpp

 def update_best_val_info(self):

 self.best_val_loss = self.avg_val_loss

Page 45 of 53

 self.psnr_dec_at_best_loss = self.avg_psnr_dec

 self.bpp_at_best_loss = self.avg_bpp

8.6. Training Code

import torch

import numpy as np

import os

import sys

import warnings

warnings.filterwarnings('ignore')

import imageio

from compressai.zoo import mbt2018_mean

try:

 import wandb

 wandb_exist = True

except ImportError:

 wandb_exist = False

import argparse

import logging

import time

from torch.utils.data import DataLoader, RandomSampler

model_path = os.path.abspath('..')

sys.path.insert(1, model_path)

from model import b_model

from utils import float_to_uint8, MSE, PSNR, calculate_distortion_loss

from utils import VimeoTrainDataset, UVGTestDataset

from utils import image_compress, save_model, load_optimizer

from utils import configure_seeds, configure_optimizers

from utils import load_model, Infographic

Argument parser

parser = argparse.ArgumentParser()

Hyperparameters, paths and settings are given

prior the training and validation

parser.add_argument("--project_name", type=str, default="ICIP2022") # Project

name

parser.add_argument("--model_name", type=str,

default="BidirRefinement_finetune_logloss") # Model name

parser.add_argument("--random_seed", type=int, default=None) # Get the seeds if

available

parser.add_argument("--torch_seed", type=int, default=None)

parser.add_argument("--train_path", type=str,

default="/datasets/vimeo_septuplet/sequences/") # Dataset paths

parser.add_argument("--val_path", type=str,

default="/scratch/users/ecetin17/UVG/full_test/")

parser.add_argument("--total_train_step", type=int, default=200000) # # of total

iterations

parser.add_argument("--train_step", type=int, default=5000) # # of iterations

for recording

parser.add_argument("--learning_rate", type=float, default=1.e-5)# learning rate

parser.add_argument("--aux_learning_rate", type=float, default=1.e-3)

parser.add_argument("--min_lr", type=float, default=1.e-7) # min. learning

rate

parser.add_argument("--patience", type=int, default=20) # scheduler

patience

Page 46 of 53

parser.add_argument("--batch_size", type=int, default=4) # Batch size

parser.add_argument("--patch_size", type=int, default=256) # Train patch

sizes

parser.add_argument("--train_gop_size", type=int, default=8) # Train gop

sizes

parser.add_argument("--train_num_frames", type=int, default=3) # Train number

of frames

parser.add_argument("--train_skip_frames", type=int, default=2) # Train number

of frames skipped

parser.add_argument("--val_gop_size", type=int, default=8) # Val gop sizes

parser.add_argument("--val_numbers", type=int, default=1) # How many

times to validate on a video

parser.add_argument("--val_skip_frames", type=int, default=1) # Val number of

frames skipped

parser.add_argument("--N_b", type=int, default=128) # Number of

channels for B-comp, N

parser.add_argument("--b_save_dir", type=str, default="../BidirRef.pth") # Save

file for the bidir. compressor

parser.add_argument("--device", type=str, default="cuda") # device "cuda"

or "cpu"

parser.add_argument("--workers", type=int, default=4) # number of

workers

We don't take any pretrained models for initial trainings (except I-frame

compressor and optical flow, which are loaded in the code)

parser.add_argument("--pretrained", type=str, default="../BidirRef.pth")

Load model from this file

parser.add_argument("--cont_train", action='store_true', default=False)

load optimizer

parser.add_argument("--wandb", action='store_true', default=False)

Store results in wandb

parser.add_argument("--log_results", action='store_false', default=True)

Store results in log

args = parser.parse_args()

args.save_name = args.model_name

logging.basicConfig(filename= args.save_name + ".log", level=logging.INFO)

rng = configure_seeds(args.random_seed, args.torch_seed)

device = torch.device(args.device)

CompressAI trade-off values (For each trade-off, we pick one above I-

compressor quality mbt2018_mean)

args.betas_mse = torch.tensor([0.0067*(255**2), 0.0250*(255**2),

0.0483*(255**2),

 0.0932*(255**2)]).to(device)

args.num_i = (5, 6, 7, 8) # beta for rate-distortion

trade-off

args.levels = args.betas_mse.shape[0] # Number of points on rate-

distortion curve

coding_order = [0, 8, 4, 2, 1, 3, 6, 5, 7] # Frame order for decoding

prev_frame, future_frame, frame_level

decoding_info = {4: [0, 8], 2: [0, 4], 1: [0, 2], 3: [2, 4], 6: [4, 8], 5: [4,

6], 7: [6, 8]}

Training Function

Page 47 of 53

def train_one_step(im_batch, model, im_models, optimizer, aux_optimizer, betas,

device):

 """

 im_batch: video frames of shape (b, c * gop_size, h, w)

 model: B-frame compressor model

 im_models: Image compressor models

 optimizer: Optimizer of the model

 aux_optimizer: Auxiliary optimizer for the entropy model

 betas: Rate-distortion tradeoff (distortion coeff.)

 device: cuda or cpu

 """

 x0 = im_batch[:, 0:3]

 x1 = im_batch[:, 3:6]

 x2 = im_batch[:, 6:9]

 # Losses for each layer

 dist_loss = 0

 rate_loss = 0

 dec0, dec2 = {}, {}

 streams = {}

 for i in range(args.levels):

 streams[i] = torch.cuda.Stream(device=device)

 level_b = torch.arange(0, args.levels).to(device)

 level_i = torch.clamp(

 level_b + torch.clamp(

 torch.abs(torch.round(torch.randn(args.levels).to(device))), max=2

), min=0, max=args.levels-1

).long()

 with torch.no_grad():

 torch.cuda.synchronize()

 with torch.cuda.stream(streams[0]):

 dec0[0] = im_models[level_i[0]](x0[0].unsqueeze(0))["x_hat"]

 dec2[0] = im_models[level_i[0]](x2[0].unsqueeze(0))["x_hat"]

 with torch.cuda.stream(streams[1]):

 dec0[1] = im_models[level_i[1]](x0[1].unsqueeze(0))["x_hat"]

 dec2[1] = im_models[level_i[1]](x2[1].unsqueeze(0))["x_hat"]

 with torch.cuda.stream(streams[2]):

 dec0[2] = im_models[level_i[2]](x0[2].unsqueeze(0))["x_hat"]

 dec2[2] = im_models[level_i[2]](x2[2].unsqueeze(0))["x_hat"]

 with torch.cuda.stream(streams[3]):

 dec0[3] = im_models[level_i[3]](x0[3].unsqueeze(0))["x_hat"]

 dec2[3] = im_models[level_i[3]](x2[3].unsqueeze(0))["x_hat"]

 torch.cuda.synchronize(device=device)

 dec0 = torch.cat(tuple(dec0.values()), dim=0)

 dec2 = torch.cat(tuple(dec2.values()), dim=0)

 output = model(

 x_before=dec0,

 x_current=x1,

 x_after=dec2,

 n=level_b,

Page 48 of 53

 l=1,

 train=True

)

 dist_loss = betas * calculate_distortion_loss(output["x_hat"], x1, dim=(1,

2, 3))

 rate_loss = output["rate"]

 loss = dist_loss + rate_loss

 loss = torch.exp(torch.mean(torch.log(loss)))

 dist_loss = torch.exp(torch.mean(torch.log(dist_loss)))

 rate_loss = torch.exp(torch.mean(torch.log(rate_loss)))

 # AUXILIARY LOSS

 aux_loss = (model.flow_compressor.aux_loss() +

model.residual_compressor.aux_loss())

 optimizer.zero_grad()

 aux_optimizer.zero_grad()

 loss.backward()

 aux_loss.backward()

 torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)

 optimizer.step()

 aux_optimizer.step()

 return dist_loss.item(), rate_loss.item(), loss.item()

Validation Function

def validate(model, im_models, betas, device, args):

 """

 test_loader: Test loader for UVG

 model: B-frame compressor model

 im_models: Image compressor model

 alpha: Rate-distortion tradeoff (distortion coeff.)

 device: cuda or cpu

 """

 with torch.no_grad():

 coding_order_eff = coding_order[2:]

 rate_loss = 0

 dist_loss = 0

 total_loss = 0

 folder_names = ["beauty", "bosphorus", "honeybee", "jockey", "ready",

"shake", "yatch"]

 psnr_dict = {k: 0 for k in range(args.levels)}

 size_dict = {k: 0 for k in range(args.levels)}

 frame_num_dict = {k: 0 for k in range(args.levels)}

 pixel_num_dict = {k: 0 for k in range(args.levels)}

 test_dataset = UVGTestDataset(

 args.val_path,

 folder_names,

 gop_size=args.val_gop_size,

 skip_frames=args.val_skip_frames,

 test_size=args.val_numbers

)

Page 49 of 53

 h, w, _ = test_dataset.orig_img_size

 # To adjust the bidirectional scheme, we increase the batch size by 1

 test_loader = DataLoader(test_dataset, batch_size=args.val_gop_size+1,

shuffle=False, num_workers=args.workers)

 decoded = {}

 # Loading videos in batches of form I-B-B-B-B-B-B-B-I

 for idx, gop in enumerate(test_loader):

 gop = gop.unsqueeze(1).to(device)

 # _, _, h, w = gop[0].shape

 for level in range(args.levels):

 # If first batch of video, we compress the first frame with I-

compressor

 if idx % args.val_numbers == 0:

 decoded[level] = {}

 dec0 = im_models[level](gop[0])

 decoded[level][0] = dec0["x_hat"]

 dec_last = im_models[level](gop[-1])

 decoded[level][coding_order[1]] = dec_last["x_hat"]

 for order in coding_order_eff:

 output = model(

 x_before=decoded[level][decoding_info[order][0]],

 x_current=gop[order],

 x_after=decoded[level][decoding_info[order][1]],

 n=[level],

 l=1,

 train=False

)

 decoded[level][order] = output["x_hat"]

 cur_dist_loss = betas[level] *

calculate_distortion_loss(output["x_hat"], gop[order], dim=(0, 1, 2, 3))

 cur_rate_loss = output["rate"].squeeze(0)

 cur_loss = torch.exp(torch.mean(torch.log(cur_dist_loss +

cur_rate_loss)))

 total_loss += cur_loss

 uint8_real = float_to_uint8(gop[order][0, :, :h, :w])

 uint8_dec_out = float_to_uint8(output["x_hat"][0, :, :h,

:w])

 cur_psnr = PSNR(

 MSE(uint8_dec_out.type(torch.float),

uint8_real.type(torch.float)),

 data_range=255

)

 psnr_dict[level] += cur_psnr

 size_dict[level] += output["size"].squeeze(0)

 frame_num_dict[level] += 1

 pixel_num_dict[level] += uint8_real.shape[1] *

uint8_real.shape[2]

 decoded[level] = {0: dec_last}

 total_frames = sum(frame_num_dict.values(), 0.0)

 total_pixels = sum(pixel_num_dict.values(), 0.0)

Page 50 of 53

 total_size = sum(size_dict.values(), 0.0)

 total_psnr = sum(psnr_dict.values(), 0.0)

 average_bpp_dict = {k: (v / pixel_num_dict[k]).item() for k, v in

size_dict.items()}

 average_psnr_dict = {k: (v / frame_num_dict[k]).item() for k, v in

psnr_dict.items()}

 average_psnr = total_psnr / total_frames

 average_loss = total_loss / total_frames

 average_bpp = total_size / total_pixels

 return average_loss.item(), average_psnr.item(), average_bpp.item(),

average_psnr_dict, average_bpp_dict

Main Function

We just train the b-coding model

def main(args):

 if args.wandb and wandb_exist:

 wandb.init(

 project=args.project_name,

 name=args.model_name,

 config=vars(args)

)

 image_compressors = [mbt2018_mean(q, "mse",

pretrained=True).to(device).float()

 for q in args.num_i]

 for idx, image_compressor in enumerate(image_compressors):

 for param in image_compressor.parameters():

 param.requires_grad = False

 image_compressors[idx] = image_compressor.eval()

 # Build the model

 model = b_model.BidirFlowRef(n=args.levels, N=args.N_b).to(device).float()

 infographic = Infographic()

 if args.pretrained:

 checkpoint = torch.load(args.pretrained, map_location=device)

 model = load_model(model, checkpoint, exceptions=[])

 model = model.eval()

 avg_val_loss, avg_psnr, avg_bpp, avg_psnr_dict, avg_bpp_dict = validate(

 model=model,

 im_models=image_compressors,

 betas=args.betas_mse,

 device=device,

 args=args

)

 infographic.update_val_info(avg_val_loss, avg_psnr, avg_bpp)

 infographic.update_best_val_info()

 logging.info(f"Initial validation loss: {avg_val_loss}")

 logging.info(f"Initial PSNR: {avg_psnr}")

 logging.info(f"Initial bpp: {avg_bpp}")

 logging.info("Initial Best Validation loss: " +

str(infographic.best_val_loss))

Page 51 of 53

 logging.info("Initial PSNR at best Validation loss: " +

str(infographic.psnr_dec_at_best_loss))

 logging.info("Initial bpp at best Validation loss: " +

str(infographic.bpp_at_best_loss))

 infographic = Infographic()

 optimizer, aux_optimizer, scheduler = configure_optimizers(model, args)

 # If we want to continue training using a checkpoint we load the optimizers

& scheduler

 if args.cont_train:

 optimizer, aux_optimizer = load_optimizer(

 checkpoint=checkpoint,

 device=device,

 optimizer=optimizer,

 aux_optimizer=aux_optimizer

)

 scheduler.load_state_dict(checkpoint["scheduler"])

 model_parameters = filter(lambda p: p.requires_grad, model.parameters())

 params = sum([np.prod(p.size()) for p in model_parameters])

 if args.wandb and wandb_exist:

 wandb.config.update({"Num. params": params})

 if args.log_results:

 logging.info("Num. params: " + str(params))

 train_dataset = VimeoTrainDataset(

 args.train_path,

 patch_size=args.patch_size,

 gop_size=args.train_gop_size,

 skip_frames=args.train_skip_frames,

 num_frames=args.train_num_frames,

 rng=rng,

 dtype="png"

)

 train_sampler = RandomSampler(train_dataset, replacement=True)

 time_start = time.perf_counter()

 # If we want to continue training using a checkpoint we load the number of

iterations

 if args.cont_train:

 iteration = checkpoint["iter"]

 else:

 iteration = 0

 model = model.train()

 while iteration <= args.total_train_step:

 train_loader = DataLoader(train_dataset, batch_size=args.batch_size,

sampler=train_sampler, num_workers=args.workers, drop_last=True)

 for gop_im_batch in train_loader:

 dist_loss, rate_loss, loss = train_one_step(

 im_batch=gop_im_batch.to(args.device).float(),

 model=model,

 im_models=image_compressors,

 optimizer=optimizer,

 aux_optimizer=aux_optimizer,

Page 52 of 53

 betas=args.betas_mse,

 device=device

)

 infographic.update_train_info(dist_loss, rate_loss, loss)

 iteration += 1

 if iteration % args.train_step == 0:

 model = model.eval()

 avg_val_loss, avg_psnr, avg_bpp, avg_psnr_dict, avg_bpp_dict =

validate(

 model=model,

 im_models=image_compressors,

 betas=args.betas_mse,

 device=device,

 args=args

)

 infographic.update_val_info(avg_val_loss, avg_psnr, avg_bpp)

 scheduler.step(avg_val_loss)

 learning_rate = optimizer.param_groups[0]["lr"]

 time_end = time.perf_counter()

 duration = time_end - time_start

 if avg_val_loss < infographic.best_val_loss:

 # Save every submodule of the model separately

 save_model(

 model=model,

 optimizer=optimizer,

 aux_optimizer=aux_optimizer,

 scheduler=scheduler,

 num_iter=iteration,

 exceptions=[],

 save_name= args.b_save_dir

)

 infographic.update_best_val_info()

 if args.log_results:

 logging.info("********** NEW BEST! **********")

 # Log to wandb if supported

 if args.wandb and wandb_exist:

 wandb_dict = {

 "Time": duration,

 "Learning rate": learning_rate,

 "Distortion loss": infographic.step_train_dist_loss /

args.train_step,

 "Rate loss": infographic.step_train_rate_loss /

args.train_step,

 "Train loss": infographic.step_train_loss /

args.train_step,

 "Validation PSNR": infographic.avg_psnr_dec,

 "Validation bpp": infographic.avg_bpp,

 "Validation loss": infographic.avg_val_loss,

 "Best Validation loss": infographic.best_val_loss,

 "PSNR at best Validation loss":

infographic.psnr_dec_at_best_loss,

 "bpp at best Validation loss":

Page 53 of 53

infographic.bpp_at_best_loss,

 }

 for k in avg_psnr_dict.keys():

 wandb_dict[f"Level {k} PSNR"] = avg_psnr_dict[k]

 wandb_dict[f"Level {k} bpp"] = avg_bpp_dict[k]

 wandb.log(wandb_dict, step=iteration)

 # Log to logfile if wanted

 if args.log_results:

 logging.info("Iteration: " + str(iteration))

 logging.info("Time: " + str(duration))

 logging.info("Learning rate: " + str(learning_rate))

 logging.info("Distortion loss: " +

str(infographic.step_train_dist_loss / args.train_step))

 logging.info("Rate loss: " +

str(infographic.step_train_rate_loss / args.train_step))

 logging.info("Train loss: " +

str(infographic.step_train_loss / args.train_step))

 logging.info("Validation PSNR: " +

str(infographic.avg_psnr_dec))

 logging.info("Validation bpp: " + str(infographic.avg_bpp))

 logging.info("Validation loss: " +

str(infographic.avg_val_loss))

 logging.info("Best Validation loss: " +

str(infographic.best_val_loss))

 logging.info("PSNR at best Validation loss: " +

str(infographic.psnr_dec_at_best_loss))

 logging.info("bpp at best Validation loss: " +

str(infographic.bpp_at_best_loss))

 logging.info("---------------------------------")

 logging.info("-- PSNR per level --")

 for k, v in avg_psnr_dict.items():

 logging.info("Level " + str(k) + " PSNR: " + str(v))

 logging.info("-- bpp per level --")

 for k, v in avg_bpp_dict.items():

 logging.info("Level " + str(k) + " bpp: " + str(v))

 logging.info("*********************************")

 infographic.zero_train_info()

 # Take the model back into training mode

 model = model.train()

 time_start = time.perf_counter()

 if iteration >= args.total_train_step:

 break

if __name__ == '__main__':

 main(args)

