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Abstract 

Video content has been becoming more prevalent in the last decade by capturing 80% of the 

online data. As this is the case, more efficient video compression methods are helpful to provide a 

better service for people who stream online video content with a limited bandwidth. For that reason, 

our aim is to develop a learned bidirectional video compression framework that achieves superior or 

competitive rate-distortion performance compared to other works in the literature of video 

compression. To achieve the desired results, we employ additional modules such as bidirectional 

motion prediction, motion refinement, learned frame fusion and achieve flexible bitrate using a single 

model with learned quantization parameters. Testing our network on UVG dataset, a common 

benchmark, we achieve competitive or superior results at high bitrates when we compare our results 

with other learned video compression networks such as DVC [1], Scale-Space Flow [2], RLVC [3], 

and LHBDC [4] in terms of PSNR and MS-SSIM scores. On the other hand, the model achieves 

slightly worse rate-distortion performance at low bitrates compared to LHBDC [4] and the traditional 

SVT-HEVC codec at very slow preset in terms of PSNR and MS-SSIM. In the following report, 

further details of the proposed network are provided extensively with visual results that demonstrate 

the effect of main modules. 
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1. Introduction 

1.1. Concept 

Compression is an important part of our life, allowing us to use internet and many other data 

sources that would be impossible to reach if we had to store or download raw data without 

compression. Thanks to Claude Shannon, information theory has brought the age of information with 

his celebrated paper defining the information in 1948. He defined the information in terms of “bits” 

and provided entropy as a quantitative tool to measure the amount of information. That way, 

information can be thought as an increasing function of uncertainty that relies in a signal. 

In addition to defining the information in terms of “bits”, he demonstrated that there exists a 

maximum rate of transmission over a channel, which we call the bandwidth of a channel. 

Accordingly, it is possible to transmit error-free signals as long as transmission rate is less than the 

channel capacity. Although inventions in communication have been allowing to reach closer to the 

theoretical limit, the available bandwidth has always been a bottleneck in information transfer, 

limiting many applications including video livestreaming or playing online games. 

As this limit cannot be overcome, one possible solution is compressing the information that is 

intended to be transmitted. However, Shannon has once again demonstrated a limit for the 

compression rate that cannot be overcome. This lower limit is the entropy of the signal of interest. 

Since this limit cannot be exceeded for lossless compression, the aim in applications of lossless image 

compression and video compression is to reach as close as possible to the lower bound. 

In contrast to lossless compression, the human visual system is less sensitive to high frequency 

content which makes it logical to consider lossy compression as a favorable option to get rid of high 

frequency content on an image or video. That way, the lower bound can be eliminated while the 

distortion on the image or video is minimized with respect to human perception. Because it allows a 

greater compression rate and minimizes the distortion on images, lossy compression is widely 

adopted in today’s applications that do not require a perfectly reconstructed image. Today, almost all 

image and video content on the internet are examples of lossy compression as lossless compression 

is not necessary in many applications such as social media and video streaming. 

As the raw data consists of redundancies such as temporal or spatial redundancies, certain 

transform operations can reduce the entropy of data and allow a more efficient compression with 

entropy coding. Since the data after transform must be quantized for compression, the quantization 

prevents the one-to-one mapping between encoding and decoding; thus, induces loss of information 

during lossy compression. For the rest of this report, we will be only concerned with lossy 
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compression as it has a wider field of application for image and video compression. 

1.2. Image Compression 

Image compression is an important step towards video compression as videos are composed of 

many temporally linked images. Image compression is possible because of the spatial correlation 

between individual pixels on an image. Consider a scene where the picture is divided between sky 

and ground. As the sky would be mostly blue and have less change in a close neighborhood, it might 

be enough to send very few symbols for a large region. On the other hand, in images which contain 

highly non-uniform shapes and structures (such as a city scene with many color variations), the 

correlation between pixels is reduced, thus, we require more bits to build the image back. 

 

Figure 1. The framework of lossy image compression. 

Considering the framework for the lossy image compression as described in Figure 1, we initially 

map the pixel domain representation of our image into a latent representation. The operation provides 

a one-to-one mapping; however, the quantization step causes information loss as the operation is not 

reversible. As the quantization steps become larger, the amount of distortion in our decoded image 

also increases. After the image is quantized, an entropy coder is used to compress the latent 

representation in a lossless manner. Subsequently, the decoder decodes the latent representation, 

dequantizes it and transforms it back into pixel domain. 

1.3. Video Compression 

Today, over 80% of the data on the internet is composed of video data [5]. This percentage is 

only expected to increase with newer technologies and more demand for entertainment through tech 

companies such as Netflix, Google, and Amazon. For that reason, the research for more efficient 

video compression methods has been in rise to transmit video content with less lagging and store it 

in a smaller space. 

In addition to the spatial correlation within the frames of a video, the frames have a high 
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correlation as videos mostly do not have interruptions and have a smooth transition between frames. 

For that reason, the video compression techniques also make use of the temporal correlation by 

applying inter prediction techniques. To exploit the temporal correlation, video compression models 

utilize motion estimation and compensation components as the motion information connects two 

consequent frames to each other. 

The importance of research on learned video compression comes from the capability of 

performing nonlinear transforms with deep neural networks. Although traditional video codecs are 

still in employment, they can only perform linear transforms that can fall short for decorrelation of 

information and entropy reduction. Furthermore, the combinatorial nature of video codecs causes a 

great problem for defining the optimal video codec. As learned video codecs can be optimized in an 

end-to-end manner with a single rate-distortion loss, the optimality is less of a concern. 

The problem that we have to address in video compression is a joint optimization problem which 

considers several components of an autoencoder architecture. Autoencoder is composed of an encoder 

and a decoder which has similar tasks as the traditional video codecs. While the encoder transforms 

the pixel domain image representation into a latent representation with lower entropy, the decoder 

transforms it back to the pixel domain representation while keeping the quality as high as possible.  

For video compression, we encode and decode the motion vectors and the residual frames which 

allow us to make use of the temporal correlation and reduce the entropy compared to single frame 

image compression. To perform this operation, we utilize two separate autoencoders to compress the 

motion vectors and the residual frames. In addition to the encoder and the decoder, the entropy coding 

requires accurate estimation of entropy parameters in order to reduce the bitrate as much as possible. 

Thus, each autoencoder architecture requires a prior network to estimate the mean and scale of the 

latent representations. The bitrate is estimated with the entropy of our latent representations as entropy 

coding is capable of achieving close to minimum bound bitrates. As the coding performance of our 

network depends on the rate-distortion performance, we optimize the whole model using an end-to-

end approach with a single loss function and simultaneous optimization of all components. 

1.4. Objectives 

The objective of this project is to build a learned bidirectional video compression network that 

can be optimized in an end-to-end manner and can achieve a competitive rate-distortion performance 

compared to other works in the literature. As unidirectional video compression yields a worse rate-

distortion performance both in case of traditional codecs and learned codecs, our aim is to build a 

bidirectional video compression network instead of a unidirectional compression network that can 
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also achieve different bitrates by using a single network for all levels. That way we aim to reduce the 

training cost and achieve a better generalization.  

Furthermore, a major aim of this project is to improve over the bidirectional video compression 

framework proposed by Yilmaz and Tekalp [4] with the use of special modules such as motion 

prediction and motion refinement modules. In addition to these modules, we aim to achieve arbitrary 

rate-distortion trade-offs using the gain unit proposed by Cui et al. [6] for image compression. 

2. Related Work 

Our model builds on the previous work that was presented in both image compression and video 

compression domains. In following sections, the details of these prior works are explained while 

comparing them with our proposed network. 

2.1. Joint Autoregressive and Hierarchical Priors for Learned Image 

Compression 

For image compression, one important work is provided by Minnen et al. [7]. With their work, 

Minnen et al. [7] propose a model that brings an improvement to the learned image compression 

domain by modeling the probability distribution of image latent representations with a mean and a 

scale value. Since the probability modeling has a high importance for entropy coding, the model can 

lower the bitrate since the distribution can be better estimated. 

 
Figure 2. The architecture of “Joint Autoregressive and Hierarchical Priors” network proposed by 

Minnen et al. [7] 

Furthermore, as depicted in Figure 2, the model proposes a causal context model to exploit the 

spatial correlation further. That way, the entropy parameters (mean and scale) are estimated better to 

encode the latent representation with a more precise probability estimation. 

As the model provides well estimation of entropy parameters, the architecture is utilized in our 
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model for the compression of motion vectors and residual frames thinking as if they were images that 

are compressed with this model. Thus, this network has an important place in our proposed video 

compression network. 

2.2. Deep Video Compression Framework (DVC) 

DVC model [1] is a pillar stone in the literature of end-to-end optimized deep video compression 

networks. The model uses unidirectional motion vectors to use the temporal correlation between 

frames and provide a low delay learned video codec. These motion vectors are composed of two 

channels where the channels represent the shift in a pixel in horizontal direction and vertical direction. 

 
Figure 3. The architecture of DVC network proposed by Lu et al. [1] 

Same as our model, the initial keyframes of the group of pictures is coded using a learned image 

compression network while the rest of the frames of the group of pictures are compressed using the 

network provided in Figure 3. First of all, the motion vectors are calculated using a learned motion 

estimation network and the motion vectors are encoded into a latent representation. The latent 

representation is quantized and passed to the decoder network that reverts the latent representation 

back into motion vectors that were estimated by the encoder. Later on, a motion compensation 

network performs bilinear warping on the last reference frame that is available to decoder with the 

estimated and transmitted motion vectors. The warped frames are also processed by a motion 

compensation network that aims to reduce the warping artifacts. That way, the motion compensated 

frame is acquired. Finally, the residual frame is calculated by subtracting the ground truth frame from 

the motion compensated frame and compressed with a similar architecture as the motion compression 

network. The residual frame is added back to the motion compensated frame at the decoder side and 
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the output frame is achieved. After compressing rest of the frames using the proposed network, the 

loss is calculated over all frames where the loss is the rate-distortion loss. 

2.3. Scale-Space Flow (SSF) 

Similar to DVC [1], the Scale-Space Flow (SSF) model proposed by Agustsson et al. [2] separates 

the motion and residual information and encodes them in separate autoencoder architectures. 

However, the back warping operation that is utilized by the DVC [1] network yields motion 

compensation artifacts that reduce the frame quality. This effect was avoided by employing a motion 

compensation network to reduce the artifacts. With SSF model [2], the back warping operation is 

replaced with scale-space warping. Scale-space warping adds a third channel to the motion vectors 

called the scale channel and allows this third channel to resemble the uncertainty that is present in 

difficult to predict areas of the frame. Using this channel, the scale-space warping operation blurs the 

regions where the motion compensation would yield worse artifacts and blur these regions in order 

to improve the frame quality while also reducing the entropy in the residual frames.  

 

Figure 4. The architecture of the Scale-Space Flow network proposed by Agustsson et al. [2] 

As depicted in Figure 4, the compression framework starts by coding the first frame of the group 

of pictures using keyframe compression (I-compression) as a reference frame. Afterwards, the scale-

space flow autoencoder network takes the reference frame and the current input frame to construct a 

scale-space flow by compressing the latent representations. Using the scale-space flow warping, the 

reference frame is warped to acquire the motion compensated (warped) prediction frame and the 

residual frame. Finally, the residual frame is compressed in a separate autoencoder network and the 

reconstructed residual frame is added back to the warped prediction to achieve the reconstructed 



Page 10 of 53 

 

current frame. 

The framework is similar to our network since the network does not compress the vectors that 

contain the motion vectors but constructs the motion vectors using an autoencoder architecture after 

giving reference and current frames as input.  

2.4. Asymmetric Gained Deep Image Compression with Continuous Rate 

Adaptation 

The work of Cui et al. [6] does not provide a complete architecture for video or image 

compression, however they demonstrate how usage of gain and inverse gain units can help in 

achieving continuous rate-distortion curves and avoid training multiple networks. 

 

Figure 5. The difference between channel influences on quality of reconstructed frame [6]. 

Since the latent representation of a frame or motion vector has to be quantized before entropy 

coding, the quantization bin size has to be deduced. Instead of training separate networks to learn the 

quantization bin size inherently through the convolution layers, Cui et al. [6] propose learning 

channel-wise quantization parameters for different bitrate levels. They demonstrate that separate 

channels have varying relative importance on frame quality in Figure 5. Thus, they propose that we 

can scale the channels with different parameters before the quantization step and learn the scale 

parameters during the training. 

The gain and inverse gain units are used to scale the latent representation by multiplying each 

channel with a different parameter for the respective bitrate level and change the quantization bin size 

effectively. The scaling parameters of the gain and inverse gain units are paired with each bitrate level 

and rate-distortion trade-off value. After achieving a latent representation from the encoder, the latent 

representation is multiplied by the channel-wise scaling vector (gain vector) of the gain module. Then, 

the multiplied latent representation is quantized and passed to the decoder. The decoder performs an 

inverse scaling operation by multiplying the quantized and reconstructed latent representation with 
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its own learned channel-wise scaling parameters. Subsequently, the decoder decodes the latent 

representation. These scaling parameters are learned throughout the training and can be thought of as 

vectors which multiply the channels of latent representations. 

The work of Cui et al. [6] has an important place in our network as it allows the adoption of 

flexible rate in our model without training separate instances. Although they propose the use of gain 

and inverse gain units in image compression, our model successfully integrates these components 

into video compression framework by using them in autoencoders of both motion compression and 

residual compression modules. 

2.5. End-to-End Rate-Distortion Optimized Learned Hierarchical Bi-Directional 

Video Compression 

Yilmaz and Tekalp [4] design a learned hierarchical bidirectional video compression network 

(LHBDC) to demonstrate the superior results that can be achieved with hierarchical bidirectional 

video coding frameworks compared to sequential video compression frameworks. They propose 

encoding videos with group of picture size of 8 frames and 𝐾 = 3 hierarchical levels. Their proposed 

method compresses first reference frames as keyframes while compressing every other frame in 

between the initial reference frames as bidirectional predicted frames. 

 
Figure 6. The architecture of LHBDC proposed by Yilmaz and Tekalp [4]. 

After compressing the initial keyframes at hierarchical level 𝐾 = 1 using the version of learned 

still-image compression network proposed by Cheng et al. [8] without attention layers, the rest of the 

frames (7 frames) are coded bidirectionally using the network in Figure 6 with the initial keyframes 
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as reference frames. The bidirectional predicted frames take the closest decoded past and future 

frames as reference frames for the backward and forward motion estimation and compensation. 

To perform bidirectional compression, the network initially estimates the motion vectors from the 

past and future decoded reference frames to the current frame. The estimation is performed by SPyNet 

[9] pretrained motion estimation network. Simultaneously, the motion vectors between the past and 

future decoded reference frames are also estimated with the same network to be used for the prediction 

of motion vectors. Making a linear motion assumption, Yilmaz and Tekalp [4] assumes that the half 

of the motion vectors between the past and future reference frames should yield a close prediction for 

the motion vectors between the past reference frame and the current frame. Calling the halved motion 

vectors between the past and future reference frames as predictions, they subtract these predictions 

from the motion vectors between the past reference frame and the current frame and repeat the same 

operation for the motion vectors between the future reference frame and the current frame. That way, 

they aim to compress the residual motion vectors which are the subtracted deviations from the 

predicted motion vectors. The residual motion vectors are then subsampled using a cubic filter to use 

less bits. The subsampled vectors are then compressed using a network that is a version of network 

by Minnen et al. [7] with residual blocks. 

  After reconstructing the residual motion vectors at the decoder side, these vectors are 

interpolated using a bicubic filter and added back to the predicted motion vectors and used to warp 

the reference frames to acquire the current frame. In order to utilize the bidirectional motion 

information, the two warped frames are fused using a motion compensation mask that is constructed 

with a U-Net architecture and warped frames as inputs. The fused frame is the final motion 

compensated frame that allows to compute the residual frame by subtracting it from the current frame. 

Finally, the residual frame is compressed with an autoencoder network that is similar to the motion 

compression network. The residual frame is added back to the motion compensated frame after it is 

reconstructed at the decoder to form the final reconstructed current frame. 

As our model is designed in collaboration with Yilmaz and Tekalp, we adopt some components 

from their previous work with many adjustments. First of all, our framework uses a different keyframe 

compression network. Although the hierarchical structure of our bidirectional compression 

framework is same as the LHBDC, we do not assume linear motion and thus employ a non-linear 

motion prediction network. Furthermore, we perform motion refinement on top of the motion 

prediction and do not use the motion residual with an explicit subtraction operation. As our motion 

compression network has a similar input-output relation to the SSF [2] model which has frames as 

inputs and flow information as output, we have a significant difference from the LHBDC network. 
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Finally, our motion compression module also transfers the frame fusion mask to the decoder side as 

extra information whereas the LHBDC computes the mask using an additional network. 

3. System Design 

In order to build our video compression model, many trials are performed with different units 

such as deformable convolutions instead of bilinear warping with optical flow. In addition, the trials 

included working with a composite video compression framework that utilized both predicted-frames 

and bidirectional-frames that make use of unidirectional and bidirectional motion information, 

respectively. However, our trials with given variations did not yield satisfactory results; thus, our 

final trial with bidirectional video compression framework with motion refinement has been chosen 

as our best performing network. 

As bidirectional video compression networks make use of motion information both in forward 

and backward directions in time, they are capable of achieving superior gains over unidirectional 

video compression networks. Resulting from this fact, our model achieves a competitive rate-

distortion performance compared to other works in the literature. In the following sections, the basic 

building blocks of the model will be illustrated in detail with visual performance evaluations and 

architectural details. 

3.1. Overview 

Our model is composed of four main building blocks. These blocks are motion prediction, motion 

compression, learned frame fusion and residual compression modules which allow us to achieve a 

high compression rate with a low distortion cost. As each module is composed of differentiable 

operations, our model is suitable for end-to-end training using a single loss function. 

Similar to work by Yilmaz and Tekalp [4], our work is trained and tested for a group of pictures 

of 8 frames and 𝐾 = 3 hierarchical levels as displayed in Figure 7. In the proposed framework, the 

first frame of each group of pictures is coded as a keyframe, thus its compression does not make use 

of temporal correlation with previous or future frames. 

For the keyframe compression, our model utilizes the learned image compression model proposed 

by Minnen et al. [7]. However, we do not use the context model that is proposed as it brings a 

significant slowdown because of its sequential operation over the pixels of an image. The keyframe 

compression model uses a hyperprior network which learns the entropy parameters of a frame and 

uses Gaussian distribution for probability modelling. That way, the model is capable of using 

arithmetic coding after determining the probability distribution over the pixels of an image. 
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Figure 7. Coding scheme of the proposed model in a single group of pictures. In a group of pictures, 

only the first frame is intra-coded while the rest of the frames are coded in a bidirectional manner. 

 

Figure 8. Overview of the proposed network architecture 

After compressing the first frames of two consequent group of pictures using the keyframe 

compressor described above, other frames are compressed using our bidirectional compression model 

depicted in Figure 8. The keyframes are used as reference frames of the middle frame that relies in 

the hierarchical level 𝐾 = 1, for the prediction of motion vectors and current frame. For all other 

frames of the group of pictures, we take past and future frames that are in one lower hierarchical level 
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as the backward and forward reference frames. For each frame, our model uses same parameters in 

the inference time. Because there exist seven frames in a group of pictures other than the keyframe, 

our model has to run seven times to encode and decode these seven frames. The separate components 

that bring increased compression efficiency to our model are described in following sections from 

Section 3.2 to Section 3.7. 

3.2. Motion Vector Prediction 

To reduce the temporal redundancy further and make use of the correlation between frames, we 

utilize a motion prediction network that has a U-Net architecture as depicted in Figure 9. Because of 

its architecture, the network is capable of learning a multiscale representation of frames and predicting 

the motion vectors more accurately. 

 
Figure 9. Motion vector prediction module architecture. 

The motion vector prediction module takes two reference frames that are previously decoded and 

predicts two motion vectors that are estimated from the past reference frame to current frame and 

from the future reference frame to current frame. That way, we reduce the temporal redundancy by 

not transmitting the predictions since the coarse parts of the motion vectors are predicted by the 

prediction module which is present in both encoder and decoder. Since both the encoder and the 

decoder are aware of the prediction, we can transmit the finer details in motion vectors alone at the 

motion refinement module. 

After predicting the coarse motion vectors which are exemplified in Figure 10, the reference frames 

are bilinear warped towards the current frame. These predicted frames are later on passed to the 

motion refinement and compression module that performs both compression and refinement. 
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Figure 10. a) The ground truth current image. b) The motion vectors in forward direction from the 

past reference frame to current reference frame. c) The motion vectors in backward direction from 

the future reference frame to current reference frame. (Red color depicts motion vectors in the -x 

direction while blue color represents motion vectors in the +x direction.) 

3.3. Motion Refinement 

After predicting the coarse motion vectors with the motion prediction module, the finer details in 

the motion vectors are transmitted together with the refining motion compression module present in 

Figure 11. The middle layers of the autoencoder architecture has 128 filters to transform the frames 

into a latent representation at the encoder and form the motion vectors and the fusion mask later at 

the decoder. This module performs both the refinement and motion compression in a similar manner 

to the Scale-Space Flow model proposed by Agustsson et al. [2]. The module has the same 

architecture as the keyframe compression network proposed by Minnen et al. [7] except the context 

model which is not present in our model. In addition, our model utilizes residual blocks in order to 

reduce the problem of vanishing gradients and boost the optimization process. 

 
Figure 11. Motion refinement and compression module architecture. 

The module takes the predicted frames and the ground truth current frame as its inputs. Thus, the 
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input layer must be provided with a tensor of 9 channels. After a latent representation is acquired and 

passed to the decoder, the decoder yields three separate tensors. These tensors are the two motion 

refinement tensors for the backward and forward warping as exemplified in Figure 12 and the fusion 

mask in order to fuse the warped frames later on. 

 
Figure 12. a) The ground truth current image. b) The motion refinement vectors in forward direction 

from the past reference frame to current reference frame. c) The motion refinement vectors in 

backward direction from the future reference frame to current reference frame. (Red color depicts 

motion vectors in the -x direction while blue color represents motion vectors in the +x direction.) 

3.4. Gain and Inverse Gain Unit 

In our motion refinement/motion compression and residual compression modules, one important 

component is the gain/inverse gain unit proposed by Cui et al. [6]. Although Cui et al. [6] has 

proposed using this component for image compression, our novel aim is to use the same component 

for video compression by using in both motion compression network and the residual compression 

network. This component allows us to train a single model to cover the complete rate-distortion curve 

without performing any additional trainings. Furthermore, the gain and inverse gain units allow us to 

form a continuous rate-distortion curve; thus, achieve arbitrary rate-distortion trade-offs without a 

major performance loss. 

The gain and inverse gain units are simple matrices composed of learned matrices that are used 

to scale latent representations before the quantization step. The scaling operation is performed using 

the learned scale parameters of the gain and inverse gain units. The gain and inverse gain units are 

matrices of 𝑁 × 𝑀 dimensions where N stands for the compression levels that are desired, and M 

stands for the number of channels in the latent representation. In that case, the gain and inverse gain 

matrices can be thought of N scaling vectors that have M entries.  

The scale parameters are paired for the gain and inverse gain units so that a scale vector, 𝑚𝑟 in 

the gain unit is only matching with the scale vector, 𝑚𝑟
′  in the inverse gain unit. These scale vectors 

are learned per channel and are learned separately for different compression levels. In our framework, 

as the middle layer of both modules is composed of 128 filters, the latent representation has 128 
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channels and the gain and inverse gain units have 𝑀 = 128 learned scale parameters per level. 

Using the gain and inverse gain units at the inference time, we are capable of achieving a 

continuous rate-distortion curve by performing exponential interpolation to the quantization vectors 

that are present in the gain and inverse gain matrices. As the pairing of the gain units and the inverse 

gain vectors guarantee that the values of decoded frame and the ground truth frame remain in the 

same range, we can choose an arbitrary constant, C, so that the multiplication of every gain and 

inverse gain vector equals to C. Using this rule, the exponential interpolation operation can be 

described with the following mathematical operation, 

 

where 𝑙 is the interpolation factor between 0 and 1, 𝑚𝑟 and 𝑚𝑡 are gain vectors of neighboring rate-

distortion tradeoff values and their matching inverse gain vectors are 𝑚𝑟
′  and 𝑚𝑡

′ , respectively. That 

way, we can come up with interpolated gain and inverse gain vectors such as 𝑚𝑣 and 𝑚𝑣
′ . 

 

Figure 13. Demonstration of channel-wise constant vector, C which is a result of multiplication of 

gain and inverse gain matrices. 

In Figure 13, we can visualize the multiplication of gain and inverse gain vectors for 4 separate levels 

with 128 channels. Following the results on the figure, we can conclude that the assumption that the 

multiplication of gain and inverse gain units is equal to a constant arbitrary vector, C, is valid as the 
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multiplication is almost same for all trade-off levels. 

3.5. Learned Frame Fusion 

After the motion refinement vectors and the fusion mask are collected from the motion refinement 

module, the motion compensation step is performed to acquire a single compensated frame using the 

framework depicted in Figure 14. To perform this operation, this module initially applies bilinear 

warping to the two previously predicted frames using the motion refinement vectors. The bilinear 

warping operation can be represented with the following mathematical representation, 

𝜔(𝑥̂𝑡−1, 𝑣𝑡̂)[𝑖, 𝑗] = 𝑥̂𝑡−1 [𝑖 + 𝑣𝑡
𝑥[𝑖, 𝑗], 𝑗 + 𝑣𝑡

𝑦[𝑖, 𝑗]] 

where 𝜔(𝑥̂𝑡−1, 𝑣𝑡̂) is the warping operation, 𝑣𝑡̂ is the estimated motion vectors and 𝑥̂𝑡−1 is the 

previously decoded frame that is sampled with bilinear interpolation. As the previously predicted 

frames only include the coarse motion information, the motion refinement vectors make finer touches 

on the frames and improve the frame quality. Subsequently, the final warped frames are fused to each 

other using the fusion mask that was the output of the motion refinement and compression module in 

Section 3.3. Fusing the two warped frames, we reduce the warping artefacts that were present after 

we performed warping two times. The fusion mask that is utilized in this step has the same 

dimensionality as our frames and can only take values between 0 and 1 since we apply a sigmoid at 

the final layer. That way, we force our model to take the best parts of both frames and fuse them at 

uncertain parts of the frame. The fusion operation can be displayed with the following operation. 

𝑋𝑡̂ = 𝐾𝑡 × 𝑋𝑝→𝑡̂ + (1 − 𝐾𝑡) × 𝑋𝑓→𝑡̂ 

where 𝐾𝑡 stands for the fusion mask,  𝑋𝑡̂ stands for the fused frame, 𝑋𝑓→𝑡̂ stands for the backward 

refined frame, and 𝑋𝑝→𝑡̂ stands for the forward refined frame. 

 
Figure 14. The diagram of frame fusion with the frame fusion mask after warping the predicted 

frames. 
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3.6. Residual Compression 

Finally, the residual frame is acquired by subtracting the motion compensated frame from the 

ground truth frame. That way, we achieve a low entropy residual frame that is capable of correcting 

the motion compensated frame after it is compressed and decoded back as displayed in Figure 15.  

The residual compression module has the same architecture as the motion refinement module that 

was presented in Section 3.3. The network again has 128 filters in the middle layers. The difference 

from the motion refinement module is that the residual compression network operates on an input 

frame which has 3 channels instead of 9 channels of motion refinement module. Furthermore, the 

output of the residual compression module is also a frame with 3 channels. The decoded residual 

frame is simply added back to the motion compensated frame in order to minimize the distortion on 

the output frame. That way, we acquire the desired output frame. 

 
Figure 15. The diagram for the residual compression module. 

4. Experiments 

4.1. Setup 

Our compression network is optimized in an end-to-end manner since it only contains 

differentiable components. To setup and optimize the model, PyTorch library [10] is used to provide 

a deep learning framework. Furthermore, the pretrained keyframe compression network proposed by 

Minnen et al. [7] is taken from the CompressAI library [11] with the name of “mbt2018_mean” and 

quality levels of 5, 6, 7, and 8 corresponding to trade-off values of 𝜆 = {845, 1626, 3141, 6060}. 

Further details about the environment and library versions can be found in Appendix 9.1. 

4.2. Datasets 

The bidirectional compression network with motion refinement is trained on the Vimeo-90K [12] 
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dataset. The specific septuplet dataset has 91,701 videos with seven frames per video at a resolution 

of 448 by 256. The dataset is also further augmented by taking different crops of 256 by 256 during 

the training time. 

To test our model, we encode and decode the video sequences from the UVG dataset [13]. 

Namely, we utilized our model on the Beauty, Bosphorus, Honeybee, ShakeNDry, Jockey, 

ReadySetGo, and YatchRide sequences. For these video sequences, each video has 600 frames except 

the shake sequence which has 300 frames. The videos have a spatial resolution of 1920 by 1080 and 

a temporal resolution of 120 fps. 

4.3. Loss Functions 

Our aim for the model is to achieve the maximum frame quality with the minimum number of 

bits. Thus, to train our model, a rate-distortion loss function is utilized as following. 

𝐿 = 𝜆𝐷 + 𝐻(𝑣𝑚𝑣) + 𝐻(𝑣𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙)  

where 𝐷 stands for the distortion present in the decoded frames, 𝑣𝑚𝑣 stands for the latent 

representation of the motion vectors of the bidirectional frames and 𝑣𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 stands for the latent 

representation of the residual components of the bidirectional frames. The 𝐻(. ) operator is for the 

entropy calculation of the latent representations and the result of the operator provides the bitrate for 

a single frame. The entropy parameters (mean and standard deviation) are calculated by the hyperprior 

network present in Motion Compression and Residual Compression modules. As the architecture of 

these modules are similar to the network presented by Minnen et al. [7], the probability distribution 

of individual pixels is approximated with Gaussian distribution. To achieve different bitrates and 

frame qualities, different trade-off values (λ) are used for each rate-distortion level. To optimize the 

model parameters, we use two different distortion functions. First of all, we train our model using 

mean squared error (MSE), 

𝐷(𝑥̂, 𝑥) = 𝑀𝑆𝐸(𝑥̂, 𝑥) =
1

ℎ × 𝑤
∑ (𝑥̂𝑛 − 𝑥𝑛)2

ℎ×𝑤

𝑛=1

 

where 𝑥̂𝑛 is the decoded pixel, 𝑥𝑛 is the ground truth pixel and ℎ × 𝑤 is the dimensions of the frame. 

Later on, the model is additionally finetuned for a second model using Multi-scale Structural 

Similarity Method (MS-SSIM) score [14] in order to achieve a result that is more in line with the 

human visual system. This score can be expressed with the following diagram in Figure 16, 
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Figure 16. The diagram to calculate the MS-SSIM loss. The number of levels for our training is 

specified as 5. 

where 𝑐(. ), 𝑠(. ), 𝐼𝑀 and the overall loss are expressed as following, 

𝑑(𝑥, 𝑦) = [𝑙𝑀(𝑥, 𝑦)]𝛼𝑀 ∏[𝑐𝑗(𝑥, 𝑦)]
𝛽𝑗

[𝑠𝑗(𝑥, 𝑦)]
𝛾𝑗

𝑀

𝑗=1

 

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦+(𝐾2𝐿)2

𝜎𝑥
2+𝜎𝑦

2+(𝐾2𝐿)2
,    𝑠(𝑥, 𝑦) =

𝜎𝑥𝑦+𝐶2/2

𝜎𝑥𝜎𝑦+𝐶2/2
,    𝑙(𝑥, 𝑦) =

2𝜇𝑥𝜇𝑦+(𝐾1𝐿)2

𝜇𝑥
2+𝜇𝑦

2+(𝐾1𝐿)2
 

In these equation for the calculation of the MS-SSIM score, x and y are the decoded and ground 

truth frames while the α, β and γ are pre-determined values by Wang et al. [14], determining the 

relative importance of different scales and components. At the end of the training, the model is tested 

in terms of the PSNR and MS-SSIM scores. 

4.4. Training Details 

For the training, we do not use any pretrained models and optimize the complete model in an end-

to-end manner. The training is performed on an NVIDIA Tesla V100 GPU for 2M iterations. The 

training is performed with the Vimeo-90K dataset [12] which provided crops of 256 by 256. For data 

augmentation, the crops are randomly selected from various parts of the 256 by 448 frames. At every 

5K iterations, we perform validation on our model in order to control the performance on the non-

training data and save the model if it generalizes well. The validation is performed using the first 

eight frames of the seven specified videos of the UVG dataset [13]. The network is optimized using 

Adam optimizer and initial learning rate is set to 10−4. The learning rate is reduced by a half when 

no improvement in validation is observed for 100K iterations.  

As the model needs to perform quantization to encode the latent representations, we model this 

effect with additive noise during training and perform hard quantization with rounding during test 

time. The additive noise that models the effect of rounding has a standard deviation of 0.5 with a 

mean of 0. 

For our training, we used 𝜆 = {436, 1626, 3141, 6060}.which corresponds to four gain and 
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inverse gain vector pairs in both the motion refinement and the residual compression modules. Using 

these trade-off values and the gain and inverse gain vector pairs, we train a single model for each 

hierarchical level of each group of pictures and each quality level. Since the single model is trained 

to perform well on different hierarchical and quality levels, our model can successfully generalize to 

very different settings. During the training, we formed mini batches of 4 video sequences with 3 

consequent frames. With each mini batch, we train all four levels that correspond to a trade-off value 

𝜆 and its gain and inverse gain vectors.  

5. Analysis and Results 

To compare our bidirectional video compression with other networks proposed in the literature, 

we provide both quantitative and qualitative comparisons in the following sections. During the tests 

our model chooses a group of pictures size of 8 frames. That way we encode 7 frames as bidirectional 

frames between every 2 intra-coded frames that were encoded using the model proposed by Minnen 

et al. [7] without the context model. 

5.1. Quantitative Results 

We compare our network quantitatively with the networks proposed in the Related Works and 

additionally traditional H.265 video codec [15]. As an anchor, the performance of the SVT-HEVC 

codec of H.265 codec is displayed in bidirectional compression mode at very slow preset. Other than 

H.265, we compare our network with famous learned video compression networks. These networks 

are DVC [1], Scale-Space Flow [2], RLVC [3] and the model proposed by Yilmaz and Tekalp [4]. 

The performances of the given models are acquired from their repositories provided in GitHub. 

To compare our results with the given works, we evaluate them in terms of PSNR and MS-SSIM 

scores and plot their rate-distortion curves. The scores are plotted against bits per pixel (bpp) over the 

resulting values from testing on UVG dataset [13]. The rate-distortion curves are acquired by linear 

interpolation as can be seen in Figure 17 and Figure 18. 

Observing Figures 17 and 18, it can be seen that our model displays a superior performance over 

other codecs except at lower bitrates. Although our model performs better by a small margin at higher 

bitrates, it falls behind of SVT-HEVC codec with very slow preset and the model proposed by Yilmaz 

and Tekalp [4]. Other than that, our model achieves a substantial margin against other codecs. As our 

model is a developed version of model by Yilmaz and Tekalp [4], our main comparison should be 

based on their model. 
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Figure 17. Rate-Distortion performance comparison with other models in terms of PSNR. The higher 

and to the left, the better is the performance. 

 
Figure 18. Rate-Distortion performance comparison with other models in terms of MS-SSIM. 
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These results are somewhat expected as bidirectional video compression is capable of achieving 

superior results compared to unidirectional video compression methods such as DVC [1] and SSF [2] 

due to the additional information coming from the backward motion information. However, 

comparing with the LHBDC model proposed by Yilmaz and Tekalp [4], the margin is relatively small. 

Although our model employs a more complex motion prediction module and performs motion 

refinement, the reason behind this fact might be due to the gain and inverse gain units that were not 

present in the model by Yilmaz and Tekalp [4]. As our framework is built with the training of a single 

model that can perform well at different bitrates, the encoders and decoders are more constrained 

compared to the LHBDC model [4].  

Furthermore, a secondary reason for the lack of performance at lower bitrates might be the 

warping artifacts that occur on the predicted frames. As we apply warping with the refined motions 

on the predicted frames, the error from the predicted frames might be propagating and resulting in 

worsened frame quality. As there are multiple reasons for the inferior performance at lower bitrates, 

the reason for this difference will be investigated by training our model in separate instances without 

the gain and inverse gain units and by training a second version of our model which applies the motion 

refinement by adding the finer motion vector details onto the predicted motion vectors instead of 

applying warping to the predicted frames. 

On the other hand, it is important to note that our rate-distortion curves have significantly more 

samples on the curve which is a result of adoption of gain and inverse gain units. This result implies 

another strength of our model which allows us to achieve a more continuous rate-distortion curve 

without training extensive numbers of models. 

5.2. Qualitative Results 

In addition to comparing our results in quantitative terms, a qualitative analysis is also performed 

by comparing the visual quality of decoded frames using our proposed model, an unofficial 

implementation of the SSF model [2] and the H.265/x.265 codec [15]. As the previous networks are 

not made publicly available, the qualitative comparison can be rather limited. 

For comparison, we can observe the decoded frames from the Bosphorus video sequence of the 

UVG dataset in Figure 19, we can detect the higher quality of the proposed network both in terms of 

the quantitative measures such as the PSNR, PSNR in YCrCb channels and MS-SSIM scores. In all 

quantitative measures our proposed model achieves the best results while SSF model [2] comes 

second. Furthermore, comparing the details on the waves and the flag on Figure 19, we can detect the 

high frequency details more clearly with the proposed model while the results with the SSF and H.265 
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lack such details. 

 

 
Figure 19. Qualitative comparison of the proposed model with the Scale-Space Flow model [2] and 

x265 codec [15] with slow preset. 

6. Conclusion 

Our flexible-rate bidirectional video compression network yields a competitive rate-distortion 

performance compared to other works in the literature of learned video compression. Although the 

model achieves slightly worse frame qualities at lower bitrates, it still remains competitive while 

achieving a better rate-distortion performance at higher bitrates when compared using the UVG 

dataset [13]. In addition, our model allows us to train a single model to achieve all rate-distortion 

trade-off values on the rate-distortion curve whereas other models are doomed to train several 

separate networks in order to build a rate-distortion curve and achieve bitrates at different ranges. As 

our aim was to build a bidirectional model that performs better in terms of rate-distortion performance 

at all bitrates, our design has partially met its goal. 

For the future work, we aim to investigate the reasoning behind the inferior performance at the 
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lower bitrates and perhaps yield an improvement also in the higher bitrates. As the reason for the 

inferior results might be the warping artifacts that yield from the frame prediction step and secondary 

application of warping on the predicted frames, we aim to propose a new model which sums the 

predicted motion vectors and the motion refinements to apply motion compensation only once instead 

of twice. We believe that the warping artifacts can be reduced by making such a change.  

Furthermore, an ablation study will be performed on the effect of our adoption of gain and inverse 

gain units. Although Cui et al. [6] claim that the units have no adversarial effect on the model 

performance in image compression, our integration into video compression might be different. For 

that reason, we plan to train our model in separate instances at all 4 levels which have been trained in 

single training. 
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8. Appendices 

8.1. Environment (.yml file) 

name: icip2022 

channels: 

  - pytorch 

  - anaconda 

  - conda-forge 

  - defaults 

dependencies: 

  - _libgcc_mutex=0.1=main 

  - anyio=2.0.2=py38h578d9bd_4 

  - argon2-cffi=20.1.0=py38h25fe258_2 

  - async_generator=1.10=py_0 

  - attrs=20.3.0=pyhd3deb0d_0 

  - babel=2.9.0=pyhd3deb0d_0 

  - backcall=0.2.0=pyh9f0ad1d_0 

  - backports=1.0=py_2 

  - backports.functools_lru_cache=1.6.1=py_0 

  - blas=1.0=mkl 

  - bleach=3.2.2=pyh44b312d_0 

  - brotlipy=0.7.0=py38h8df0ef7_1001 

  - ca-certificates=2020.12.5=ha878542_0 

  - certifi=2020.12.5=py38h578d9bd_1 

  - cffi=1.14.4=py38h261ae71_0 

  - chardet=4.0.0=py38h578d9bd_1 

  - cryptography=3.3.1=py38h3c74f83_0 

  - cudatoolkit=11.0.221=h6bb024c_0 

  - decorator=4.4.2=py_0 

  - defusedxml=0.6.0=py_0 

  - entrypoints=0.3=pyhd8ed1ab_1003 

  - freetype=2.10.4=h5ab3b9f_0 

  - idna=2.10=pyh9f0ad1d_0 

  - imageio=2.9.0=py_0 

  - importlib-metadata=3.4.0=py38h578d9bd_0 

  - importlib_metadata=3.4.0=hd8ed1ab_0 

  - intel-openmp=2020.2=254 

  - ipykernel=5.4.3=py38h81c977d_0 

  - ipython=7.12.0=py38h5ca1d4c_0 

  - ipython_genutils=0.2.0=py_1 

  - jedi=0.18.0=py38h578d9bd_2 

  - jinja2=2.11.2=pyh9f0ad1d_0 

  - jpeg=9b=h024ee3a_2 

  - json5=0.9.5=pyh9f0ad1d_0 

  - jsonschema=3.2.0=py_2 

  - jupyter_client=6.1.11=pyhd8ed1ab_1 

  - jupyter_core=4.7.0=py38h578d9bd_1 

  - jupyter_server=1.2.2=py38h578d9bd_1 

  - jupyterlab=3.0.5=pyhd8ed1ab_0 

  - jupyterlab_pygments=0.1.2=pyh9f0ad1d_0 
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  - jupyterlab_server=2.1.2=pyhd8ed1ab_0 

  - lcms2=2.11=h396b838_0 

  - ld_impl_linux-64=2.33.1=h53a641e_7 

  - libedit=3.1.20191231=h14c3975_1 

  - libffi=3.3=he6710b0_2 

  - libgcc-ng=9.1.0=hdf63c60_0 

  - libgfortran-ng=7.3.0=hdf63c60_0 

  - libpng=1.6.37=hbc83047_0 

  - libsodium=1.0.18=h36c2ea0_1 

  - libstdcxx-ng=9.1.0=hdf63c60_0 

  - libtiff=4.1.0=h2733197_1 

  - libuv=1.40.0=h7b6447c_0 

  - lz4-c=1.9.3=h2531618_0 

  - markupsafe=1.1.1=py38h8df0ef7_2 

  - mistune=0.8.4=py38h25fe258_1002 

  - mkl=2020.2=256 

  - mkl-service=2.3.0=py38he904b0f_0 

  - mkl_fft=1.2.0=py38h23d657b_0 

  - mkl_random=1.1.1=py38h0573a6f_0 

  - natsort=7.0.1=py_0 

  - nbclassic=0.2.6=pyhd8ed1ab_0 

  - nbclient=0.5.1=py_0 

  - nbconvert=6.0.7=py38h578d9bd_3 

  - nbformat=5.1.2=pyhd8ed1ab_1 

  - ncurses=6.2=he6710b0_1 

  - nest-asyncio=1.4.3=pyhd8ed1ab_0 

  - ninja=1.10.2=py38hff7bd54_0 

  - notebook=6.2.0=py38h578d9bd_0 

  - numpy=1.19.2=py38h54aff64_0 

  - numpy-base=1.19.2=py38hfa32c7d_0 

  - olefile=0.46=py_0 

  - openssl=1.1.1i=h27cfd23_0 

  - packaging=20.8=pyhd3deb0d_0 

  - pandoc=2.11.3.2=h7f98852_0 

  - pandocfilters=1.4.2=py_1 

  - parso=0.8.1=pyhd8ed1ab_0 

  - pexpect=4.8.0=pyh9f0ad1d_2 

  - pickleshare=0.7.5=py_1003 

  - pillow=8.1.0=py38he98fc37_0 

  - pip=20.3.3=py38h06a4308_0 

  - prometheus_client=0.9.0=pyhd3deb0d_0 

  - prompt-toolkit=3.0.11=pyha770c72_0 

  - prompt_toolkit=3.0.11=hd8ed1ab_0 

  - ptyprocess=0.7.0=pyhd3deb0d_0 

  - pycparser=2.20=pyh9f0ad1d_2 

  - pygments=2.7.4=pyhd8ed1ab_0 

  - pyopenssl=20.0.1=pyhd8ed1ab_0 

  - pyparsing=2.4.7=pyh9f0ad1d_0 

  - pyrsistent=0.17.3=py38h25fe258_1 

  - pysocks=1.7.1=py38h578d9bd_3 



Page 31 of 53 

 

  - python=3.8.5=h7579374_1 

  - python-dateutil=2.8.1=py_0 

  - python_abi=3.8=1_cp38 

  - pytorch=1.7.1=py3.8_cuda11.0.221_cudnn8.0.5_0 

  - pytz=2020.5=pyhd8ed1ab_0 

  - pyzmq=20.0.0=py38h1d1b12f_1 

  - readline=8.0=h7b6447c_0 

  - requests=2.25.1=pyhd3deb0d_0 

  - scipy=1.5.2=py38h0b6359f_0 

  - send2trash=1.5.0=py_0 

  - setuptools=51.3.3=py38h06a4308_4 

  - six=1.15.0=py38h06a4308_0 

  - sniffio=1.2.0=py38h578d9bd_1 

  - sqlite=3.33.0=h62c20be_0 

  - terminado=0.9.2=py38h578d9bd_0 

  - testpath=0.4.4=py_0 

  - tk=8.6.10=hbc83047_0 

  - torchaudio=0.7.2=py38 

  - torchvision=0.8.2=py38_cu110 

  - tornado=6.1=py38h25fe258_0 

  - traitlets=5.0.5=py_0 

  - typing_extensions=3.7.4.3=py_0 

  - urllib3=1.26.2=pyhd8ed1ab_0 

  - wcwidth=0.2.5=pyh9f0ad1d_2 

  - webencodings=0.5.1=py_1 

  - wheel=0.36.2=pyhd3eb1b0_0 

  - xz=5.2.5=h7b6447c_0 

  - zeromq=4.3.3=h58526e2_3 

  - zipp=3.4.0=py_0 

  - zlib=1.2.11=h7b6447c_3 

  - zstd=1.4.5=h9ceee32_0 

  - pip: 

    - cupy-cuda110==8.5.0 

    - cycler==0.10.0 

    - fastrlock==0.5 

    - kiwisolver==1.3.1 

    - matplotlib==3.3.3 

    - pytorch-msssim==0.2.0 

prefix: /scratch/users/ecetin17/.conda/envs/icip2022 

8.2. U-Net Code [16] 

import torch 

from torch import nn 

import torch.nn.functional as F 

 

# Adapted from "Tunable U-Net implementation in PyTorch" 

# https://github.com/jvanvugt/pytorch-unet 

 

class UNet(nn.Module): 

    def __init__(self, in_channels=1, out_channels=2, depth=5, wf=5, 

padding=True): 

        super(UNet, self).__init__() 
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        self.padding = padding 

        self.depth = depth 

        prev_channels = in_channels 

        self.down_path = nn.ModuleList() 

        for i in range(depth): 

            self.down_path.append( 

                UNetConvBlock(prev_channels, 2 ** (wf + i), padding) 

            ) 

            prev_channels = 2 ** (wf + i) 

        self.midconv = nn.Conv2d(prev_channels, prev_channels, kernel_size=3, 

padding=1) 

 

        self.up_path = nn.ModuleList() 

        for i in reversed(range(depth - 1)): 

            self.up_path.append( 

                UNetUpBlock(prev_channels, 2 ** (wf + i), padding) 

            ) 

            prev_channels = 2 ** (wf + i) 

 

        self.last = nn.Conv2d(prev_channels, out_channels, 

kernel_size=3,padding=1) 

 

    def forward(self, x): 

        blocks = [] 

        for i, down in enumerate(self.down_path): 

            x = down(x) 

            if i != len(self.down_path) - 1: 

                blocks.append(x) 

                x = F.avg_pool2d(x, 2) 

        x = F.leaky_relu(self.midconv(x), negative_slope = 0.1) 

        for i, up in enumerate(self.up_path): 

            x = up(x, blocks[-i - 1]) 

 

        return self.last(x) 

 

class UNetConvBlock(nn.Module): 

    def __init__(self, in_size, out_size, padding): 

        super(UNetConvBlock, self).__init__() 

        block = [] 

 

        block.append(nn.Conv2d(in_size, out_size, kernel_size=3, 

padding=int(padding))) 

        block.append(nn.LeakyReLU(0.1)) 

 

        block.append(nn.Conv2d(out_size, out_size, kernel_size=3, 

padding=int(padding))) 

        block.append(nn.LeakyReLU(0.1)) 

        self.block = nn.Sequential(*block) 

 

    def forward(self, x): 

        out = self.block(x) 

        return out 

 

class UNetUpBlock(nn.Module): 

    def __init__(self, in_size, out_size, padding): 

        super(UNetUpBlock, self).__init__() 

 

        self.up = nn.Sequential( 

                nn.Upsample(mode='bilinear', scale_factor=2), 

                nn.Conv2d(in_size, out_size, kernel_size=3, padding=1), 

            ) 

        self.conv_block = UNetConvBlock(in_size, out_size, padding) 
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    def center_crop(self, layer, target_size): 

        _, _, layer_height, layer_width = layer.size() 

        diff_y = (layer_height - target_size[0]) // 2 

        diff_x = (layer_width - target_size[1]) // 2 

        return layer[ 

            :, :, diff_y : (diff_y + target_size[0]), diff_x : (diff_x + 

target_size[1]) 

        ] 

    def forward(self, x, bridge): 

        up = self.up(x) 

        crop1 = self.center_crop(bridge, up.shape[2:]) 

        out = torch.cat((up, crop1), 1) 

        out = self.conv_block(out) 

        return out 

8.3. Layers Code 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

 

from compressai.models import MeanScaleHyperprior 

from compressai.models.utils import conv, deconv 

from compressai.layers import ( 

    GDN, 

    AttentionBlock, 

    ResidualBlock, 

    ResidualBlockUpsample, 

    ResidualBlockWithStride, 

    conv3x3, 

    subpel_conv3x3, 

) 

 

def conv(in_channels, out_channels, kernel_size=5, stride=2): 

    return nn.Conv2d( 

        in_channels, 

        out_channels, 

        kernel_size=kernel_size, 

        stride=stride, 

        padding=kernel_size // 2, 

    ) 

 

def deconv(in_channels, out_channels, kernel_size=5, stride=2): 

    return nn.ConvTranspose2d( 

        in_channels, 

        out_channels, 

        kernel_size=kernel_size, 

        stride=stride, 

        output_padding=stride - 1, 

        padding=kernel_size // 2, 

    ) 

 

class Gain_Module(nn.Module): 

        def __init__(self, n=6, N=128, bias=False, inv=False): 

            """ 

            n: number of scales for quantization levels 

            N: number of channels 

            """ 

            super(Gain_Module, self).__init__() 

             

            self.gain_matrix = nn.Parameter(torch.ones(n, N)) 
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            self.bias = bias 

            if bias: 

                self.bias = nn.Parameter(torch.ones(N)) 

             

        def forward(self, x, n=None, l=1): 

            B, C, H, W = x.shape 

             

            # If we want to find a non-trained rate-distortion point 

            if (l != 1): 

                gain1 = self.gain_matrix[n] 

                gain2 = self.gain_matrix[[n[0]+1]] 

                gain = (torch.abs(gain1)**l)*(torch.abs(gain2)**(1-l)) 

                 

            else: 

                gain = torch.abs(self.gain_matrix[n]) 

             

            reshaped_gain = gain.unsqueeze(2).unsqueeze(3) 

                 

            rescaled_latent = reshaped_gain * x 

             

            if self.bias: 

                rescaled_latent += self.bias[n] 

             

            return rescaled_latent 

            

class FlowCompressor(MeanScaleHyperprior): 

 

    def __init__(self, n=6, in_ch=9, out_ch=5, N=128, bias=False, **kwargs): 

        super().__init__(N=N, M=N, **kwargs) 

 

        self.g_a = nn.Sequential( 

            ResidualBlockWithStride(in_ch, N, stride=2), 

            ResidualBlock(N, N), 

            ResidualBlockWithStride(N, N, stride=2), 

            ResidualBlock(N, N), 

            ResidualBlockWithStride(N, N, stride=2), 

            ResidualBlock(N, N), 

            conv3x3(N, N, stride=2), 

        ) 

 

        self.h_a = nn.Sequential( 

            conv3x3(N, N), 

            nn.LeakyReLU(inplace=True), 

            conv3x3(N, N), 

            nn.LeakyReLU(inplace=True), 

            conv3x3(N, N, stride=2), 

            nn.LeakyReLU(inplace=True), 

            conv3x3(N, N), 

            nn.LeakyReLU(inplace=True), 

            conv3x3(N, N, stride=2), 

        ) 

 

        self.h_s = nn.Sequential( 

            conv3x3(N, N), 

            nn.LeakyReLU(inplace=True), 

            subpel_conv3x3(N, N, 2), 

            nn.LeakyReLU(inplace=True), 

            conv3x3(N, N * 3 // 2), 

            nn.LeakyReLU(inplace=True), 

            subpel_conv3x3(N * 3 // 2, N * 3 // 2, 2), 

            nn.LeakyReLU(inplace=True), 

            conv3x3(N * 3 // 2, N * 2), 

        ) 
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        self.g_s = nn.Sequential( 

            ResidualBlock(N, N), 

            ResidualBlockUpsample(N, N, 2), 

            ResidualBlock(N, N), 

            ResidualBlockUpsample(N, N, 2), 

            ResidualBlock(N, N), 

            ResidualBlockUpsample(N, N, 2), 

            ResidualBlock(N, N), 

            subpel_conv3x3(N, out_ch, 2), 

        ) 

        self.g_s[-1][0].weight.data.fill_(0.0) 

        self.g_s[-1][0].bias.data.fill_(0.0) 

         

        self.gain_unit = Gain_Module(n=n, N=N, bias=bias, inv=False) 

        self.inv_gain_unit = Gain_Module(n=n, N=N, bias=bias, inv=True) 

         

        self.hyper_gain_unit = Gain_Module(n=n, N=N, bias=bias, inv=False) 

        self.hyper_inv_gain_unit = Gain_Module(n=n, N=N, bias=bias, inv=True) 

         

    def forward(self, x, n=None, l=None, train=False): 

        self.training = train 

         

        y = self.g_a(x) 

        scaled_y = self.gain_unit(y, n, l) 

        z = self.h_a(scaled_y) 

        scaled_z = self.hyper_gain_unit(z, n, l) 

        z_hat, z_likelihoods = self.entropy_bottleneck(scaled_z) 

        scaled_z_hat = self.hyper_inv_gain_unit(z_hat, n, l) 

        gaussian_params = self.h_s(scaled_z_hat) 

        scales_hat, means_hat = gaussian_params.chunk(2, 1) 

        y_hat, y_likelihoods = self.gaussian_conditional(scaled_y, scales_hat, 

means=means_hat) 

        scaled_y_hat = self.inv_gain_unit(y_hat, n, l) 

        x_hat = self.g_s(scaled_y_hat) 

 

        return { 

            "x_hat": x_hat, 

            "likelihoods": {"y": y_likelihoods, "z": z_likelihoods}, 

        } 

         

class ResidualCompressor(MeanScaleHyperprior): 

 

    def __init__(self, n=6, in_ch=3, N=128, bias=False, **kwargs): 

        super().__init__(N=N, M=N, **kwargs) 

 

        self.g_a = nn.Sequential( 

            ResidualBlockWithStride(in_ch, N, stride=2), 

            ResidualBlock(N, N), 

            ResidualBlockWithStride(N, N, stride=2), 

            ResidualBlock(N, N), 

            ResidualBlockWithStride(N, N, stride=2), 

            ResidualBlock(N, N), 

            conv3x3(N, N, stride=2), 

        ) 

 

        self.h_a = nn.Sequential( 

            conv3x3(N, N), 

            nn.LeakyReLU(inplace=True), 

            conv3x3(N, N), 

            nn.LeakyReLU(inplace=True), 

            conv3x3(N, N, stride=2), 

            nn.LeakyReLU(inplace=True), 
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            conv3x3(N, N), 

            nn.LeakyReLU(inplace=True), 

            conv3x3(N, N, stride=2), 

        ) 

 

        self.h_s = nn.Sequential( 

            conv3x3(N, N), 

            nn.LeakyReLU(inplace=True), 

            subpel_conv3x3(N, N, 2), 

            nn.LeakyReLU(inplace=True), 

            conv3x3(N, N * 3 // 2), 

            nn.LeakyReLU(inplace=True), 

            subpel_conv3x3(N * 3 // 2, N * 3 // 2, 2), 

            nn.LeakyReLU(inplace=True), 

            conv3x3(N * 3 // 2, N * 2), 

        ) 

 

        self.g_s = nn.Sequential( 

            ResidualBlock(N, N), 

            ResidualBlockUpsample(N, N, 2), 

            ResidualBlock(N, N), 

            ResidualBlockUpsample(N, N, 2), 

            ResidualBlock(N, N), 

            ResidualBlockUpsample(N, N, 2), 

            ResidualBlock(N, N), 

            subpel_conv3x3(N, in_ch, 2), 

        ) 

         

        self.gain_unit = Gain_Module(n=n, N=N, bias=bias, inv=False) 

        self.inv_gain_unit = Gain_Module(n=n, N=N, bias=bias, inv=True) 

         

        self.hyper_gain_unit = Gain_Module(n=n, N=N, bias=bias, inv=False) 

        self.hyper_inv_gain_unit = Gain_Module(n=n, N=N, bias=bias, inv=True) 

         

    def forward(self, x, n=None, l=None, train=False): 

        self.training = train 

         

        y = self.g_a(x) 

        scaled_y = self.gain_unit(y, n, l) 

        z = self.h_a(scaled_y) 

        scaled_z = self.hyper_gain_unit(z, n, l) 

        z_hat, z_likelihoods = self.entropy_bottleneck(scaled_z) 

        scaled_z_hat = self.hyper_inv_gain_unit(z_hat, n, l) 

        gaussian_params = self.h_s(scaled_z_hat) 

        scales_hat, means_hat = gaussian_params.chunk(2, 1) 

        y_hat, y_likelihoods = self.gaussian_conditional(scaled_y, scales_hat, 

means=means_hat) 

        scaled_y_hat = self.inv_gain_unit(y_hat, n, l) 

        x_hat = self.g_s(scaled_y_hat) 

 

        return { 

            "x_hat": x_hat, 

            "likelihoods": {"y": y_likelihoods, "z": z_likelihoods}, 

        } 

8.4. Model Code 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

import torchvision.ops.deform_conv as df 

import time 

import math 
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from compressai.models import MeanScaleHyperprior 

from compressai.models.utils import conv, deconv 

from compressai.layers import GDN 

 

from .layers import FlowCompressor, ResidualCompressor 

from .unet import UNet 

            

device = torch.device("cuda") 

 

class BidirFlowRef(nn.Module): 

    """ 

    Bidirectional Compression with Flow Refinement 

    """ 

    def __init__(self, n=6, N=128): 

        super(BidirFlowRef, self).__init__() 

         

        self.flow_predictor = UNet(in_channels=6, out_channels=4, depth=5, wf=5, 

padding=True) 

         

        self.flow_compressor = FlowCompressor(n=n, in_ch=9, out_ch=5, N=N, 

bias=False) 

        self.residual_compressor = ResidualCompressor(n=n, in_ch=3, N=N, 

bias=False) 

         

         

    def forward(self, x_before, x_current, x_after, n=None, l=1, train=False): 

        _, _, H, W = x_current.shape 

        num_pixels = H * W 

         

        enc_start = time.perf_counter() 

         

        pred_input = torch.cat((x_before, x_after), dim=1) 

         

        mv_pred = self.flow_predictor(pred_input) 

         

        mv_before, mv_after = torch.chunk(mv_pred, 2, dim=1) 

         

        x_before_pred = self.backwarp(x_before, mv_before) 

        x_after_pred = self.backwarp(x_after, mv_after) 

         

        x_input = torch.cat((x_current, x_before_pred, x_after_pred), dim=1) 

         

        flow_result = self.flow_compressor(x_input, n, l, train) 

        flow_hat = flow_result["x_hat"] 

         

        dec_start = time.perf_counter() 

         

        mv_before_refined = flow_hat[:, :2, :, :] 

        mv_after_refined = flow_hat[:, 2:4, :, :] 

        beta = F.sigmoid(flow_hat[:, 4:, :, :]) 

         

        x_comp = beta * self.backwarp(x_before_pred, mv_before_refined) + (1 - 

beta) * self.backwarp(x_after_pred, mv_after_refined) 

         

        dec_mid = time.perf_counter() 

        dec_time = dec_mid - dec_start 

         

        residual = x_current - x_comp 

         

        residual_result = self.residual_compressor(residual, n, l, train) 

         

        enc_end = time.perf_counter() 
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        enc_time = enc_end - enc_start 

         

        residual_hat = residual_result["x_hat"] 

         

        dec_mid_start = time.perf_counter() 

         

        x_hat = x_comp + residual_hat 

         

        dec_mid_end = time.perf_counter() 

        dec_time += (dec_mid_end - dec_mid_start) 

         

        size_flow = sum( 

            (torch.log(likelihoods).sum(dim=(1, 2, 3)) / (-math.log(2))) 

            for likelihoods in flow_result["likelihoods"].values() 

        ) 

        rate_flow = size_flow / num_pixels 

         

        size_residual = sum( 

            torch.log(likelihoods).sum(dim=(1, 2, 3)) / (-math.log(2)) 

            for likelihoods in residual_result["likelihoods"].values() 

        ) 

        rate_residual = size_residual / num_pixels 

         

        return { 

            "x_hat": x_hat, 

            "x_before_pred": x_before_pred, 

            "x_after_pred": x_after_pred, 

            "mv_before": mv_before, 

            "mv_after": mv_after, 

            "mv_before_refined": mv_before_refined, 

            "mv_after_refined": mv_after_refined, 

            "beta": beta, 

            "x_before_refined": self.backwarp(x_before_pred, mv_before_refined), 

            "x_after_refined": self.backwarp(x_after_pred, mv_after_refined), 

            "x_comp": x_comp, 

            "residual": residual_hat, 

            "size": size_flow + size_residual, 

            "rate": rate_flow + rate_residual, 

            "enc_time": enc_time, 

            "dec_time": dec_time 

        } 

         

    def backwarp(self, tenInput, tenFlow): 

 

        tenHor = torch.linspace(-1.0 + (1.0 / tenFlow.shape[3]), 1.0 - (1.0 / 

tenFlow.shape[3]), 

                            tenFlow.shape[3]).view(1, 1, 1, -1).expand(-1, -1, 

tenFlow.shape[2], -1) 

        tenVer = torch.linspace(-1.0 + (1.0 / tenFlow.shape[2]), 1.0 - (1.0 / 

tenFlow.shape[2]), 

                            tenFlow.shape[2]).view(1, 1, -1, 1).expand(-1, -1, -

1, tenFlow.shape[3]) 

 

        backwarp_tenGrid = torch.cat([ tenHor, tenVer ], 1).to(device) 

        # end 

 

        tenFlow = torch.cat([ tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) 

/ 2.0), 

                          tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 

2.0) ], 1) 

 

        return torch.nn.functional.grid_sample(input=tenInput, 

                                           grid=(backwarp_tenGrid + 
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tenFlow).permute(0, 2, 3, 1), 

                                           mode='bilinear', 

padding_mode='border', align_corners=False) 

8.5. Utility Code 

import torch 

from torch import optim 

import numpy as np 

from natsort import natsorted 

import glob 

import random 

import sys 

import imageio 

import math 

import torch.nn as nn 

import logging 

 

def normalize(tensor): 

    norm = (tensor) / 255. 

    return norm 

 

def float_to_uint8(image): 

    clip = torch.clamp(image, 0., 1.) * 255. 

    im_uint8 = torch.round(clip).type(torch.uint8) 

    return im_uint8 

 

def MSE(gt, pred): 

    mse = torch.mean((gt - pred) ** 2) 

    return mse 

 

def PSNR(mse, data_range): 

    psnr = 10 * torch.log10((data_range ** 2) / mse) 

    return psnr 

 

def calculate_distortion_loss(out, real, dim): 

    """Mean Squared Error""" 

    distortion_loss = torch.mean((out - real) ** 2, dim=dim) 

    return distortion_loss 

 

def pad(im): 

    """Padding to fix size at validation""" 

    (b, c, w, h) = im.size() 

 

    p1 = (64 - (w % 64)) % 64 

    p2 = (64 - (h % 64)) % 64 

 

    pad = nn.ReflectionPad2d(padding=(0, p2, 0, p1)) 

    return pad(im).squeeze(0) 

         

# ### Training & Test Video & Image Datasets 

 

from torch.utils.data import Dataset 

 

def tensor_crop(frames, patch_size, rng): 

    """ 

    Crop frames according to the patch size 

    Output is a numpy array 

    """ 

    X_train = [] 

    sample_im = imageio.imread(frames[0]) 

     

    x = rng.randint(0, sample_im.shape[1] - patch_size) 
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    y = rng.randint(0, sample_im.shape[0] - patch_size) 

 

    for k in range(len(frames)): 

 

        img = imageio.imread(frames[k]) 

        img_cropped = img[y:y + patch_size, x:x + patch_size] 

        img_cropped = img_cropped.transpose(2, 0, 1) 

         

        if k == 0: 

            img_concat = np.array(img_cropped) 

        else: 

            img_concat = np.concatenate((img_concat, img_cropped), axis=0) 

 

    return img_concat 

 

class VimeoTrainDataset(Dataset): 

    """Dataset for custom vimeo""" 

 

    def __init__(self, data_path, patch_size, gop_size, skip_frames, num_frames, 

rng, dtype=".png"): 

        """ 

        data_path: path to folders of videos, 

        patch_size: size to crop for training, 

        gop_size: GoP size, 

        skip_frames: do we skip frames (int), 

        num_frames: whether we limit the number of frames in the GoP, 

        rng: random number generator, 

        dype: png or jpeg 

        """ 

 

        self.data_path = data_path 

 

        # Pick the videos with sufficient resolution 

        videos = [] 

        folders = natsorted(glob.glob(data_path + "*")) 

        for folder in folders: 

            videos += natsorted(glob.glob(folder + "/*")) 

         

        self.videos = videos 

         

        self.patch_size = patch_size 

        self.gop_size = gop_size 

        self.skip_frames = skip_frames 

        self.dtype = dtype 

         

        # Random number generator for reproducability 

        self.rng = rng 

         

        # How many frames to take 

        if num_frames: 

            self.num_frames = num_frames 

        else: 

            self.num_frames = (self.gop_size // self.skip_frames) + 1 

 

        self.dataset_size = len(self.videos) 

 

    def __len__(self): 

        return self.dataset_size 

 

    def __getitem__(self, item): 

        video = self.videos[item] 

        video_im_list = natsorted(glob.glob(video + "/*." + self.dtype)) 
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        length = len(video_im_list) 

 

        s = self.rng.randint(0, length - 1 - (self.num_frames - 1) * 

self.skip_frames) 

        video_split = video_im_list[s:s + self.skip_frames * 

self.num_frames:self.skip_frames] 

         

        video_split = tensor_crop(video_split, self.patch_size, self.rng) 

        video_split = normalize(video_split) 

         

        return video_split 

 

class UVGTestDataset(Dataset): 

    """Dataset for UVG""" 

 

    def __init__(self, data_path, video_names, gop_size, skip_frames, 

test_size=2): 

        """ 

        data_path: path to folders of videos, 

        video_name: video name (e.g. beauty), 

        skip_frames: do we skip frames (int, e.g. 1), 

        """ 

        # Get the frame paths for each frame 

        self.data_path = data_path 

        self.skip_frames = skip_frames 

        self.gop_size = gop_size 

        self.test_size = test_size 

        self.frames = [] 

         

        for video_name in video_names: 

            video = data_path + video_name 

            frames = natsorted(glob.glob(video + 

"/*.png"))[:test_size*gop_size+1] 

             

            for idx, frame in enumerate(frames): 

                self.frames.append(frame) 

                if (idx % gop_size == 0) and (idx != 0) and (idx // gop_size != 

test_size): 

                    self.frames.append(frame) 

         

        self.dataset_size = len(self.frames) 

        self.orig_img_size = imageio.imread(self.frames[0]).shape 

         

    def __len__(self): 

        return self.dataset_size 

 

    def __getitem__(self, item):         

        frame = self.frames[item] 

         

        im = imageio.imread(frame).transpose(2, 0, 1) 

        im = normalize(torch.from_numpy(im)).unsqueeze(0) 

        im = pad(im) 

         

        return im 

     

class KodakTestDataset(Dataset): 

    """Dataset for Kodak""" 

 

    def __init__(self, data_path): 

        """ 

        data_path: path to folders of videos, 

        video_name: video name (e.g. beauty), 

        skip_frames: do we skip frames (int, e.g. 1), 
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        """ 

        # Get the frame paths for each frame 

        self.data_path = data_path 

        self.images = natsorted(glob.glob(self.data_path + "*.png")) 

                

    def __len__(self): 

        return len(self.images) 

 

    def __getitem__(self, item): 

        im = self.images[item] 

         

        im = imageio.imread(im).transpose(2, 0, 1) 

        im = normalize(torch.from_numpy(im)) 

         

        return im 

 

# ### I-Frame image compressor 

 

def image_compress(im, compressor): 

    out = compressor(im) 

    dec = out["x_hat"] 

    size_image = sum( 

        (torch.log(likelihoods).sum() / (-math.log(2))) 

        for likelihoods in out["likelihoods"].values() 

    ) 

 

    return dec, size_image 

 

# ### Save and load model 

 

def save_model(model, optimizer, aux_optimizer, scheduler, num_iter, exceptions, 

save_name="checkpoint.pth"): 

    """ 

    Save a model with its optimizer, aux_optimizer, scheduler and # of iteration 

info. 

    If some of them are not desired, give None as input instead of it 

    """ 

    save_dict = {} 

    if optimizer: 

        save_dict["optimizer"] = optimizer.state_dict() 

    if aux_optimizer: 

        save_dict["aux_optimizer"] = aux_optimizer.state_dict() 

     

    if scheduler: 

        save_dict["scheduler"] = scheduler.state_dict() 

         

    if num_iter: 

        save_dict["iter"] = num_iter 

     

    for child, module in model.named_children(): 

        # If we don't want to save a child, we skip it 

        if child in exceptions: 

            continue 

        save_dict[child] = module.state_dict() 

        logging.info("Saved " + child + " at " + save_name) 

         

    torch.save(save_dict, save_name) 

 

def load_model(model, pretrained_dict, exceptions): 

    """ 

    Load the model parameters from a dictionary. The dictionary must have key 

names same 

    as the model attributes (which are submodules). The save_model() function is 
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designed 

    to be matching with this function. 

    """ 

    model_child_names = [name for name, _ in model.named_children()] 

     

    for name, submodule in pretrained_dict.items(): 

        # If we don't want to load a module, we skip it 

        if name in exceptions: 

            continue 

             

        if name in model_child_names: 

            message = getattr(model, name).load_state_dict(submodule) 

            logging.info(name + ": " + str(message)) 

    return model 

 

def configure_seeds(random_seed=None, torch_seed=None): 

    if random_seed is None: 

        random_seed = random.randrange(sys.maxsize) 

    if torch_seed is None: 

        torch_seed = torch.seed() 

    else: 

        torch.manual_seed(torch_seed) 

     

    rng = random.Random(random_seed) 

    logging.info("Random library seed: " + str(random_seed)) 

    logging.info("PyTorch library seed: " + str(torch_seed)) 

     

    return rng 

 

def configure_optimizers(model, args): 

    """Separate parameters for the main optimizer and the auxiliary optimizer. 

    Return two optimizers""" 

    # Use list of tuples instead of dict to be able to later check the elements 

are unique and there is no intersection 

    parameters = [] 

    aux_parameters = [] 

    parameter_dict = {} 

    for name, param in model.named_parameters(): 

        parameter_dict[name] = param 

        if not name.endswith(".quantiles"): 

            parameters.append((name, param)) 

        else: 

            aux_parameters.append((name, param)) 

     

    aux_param_set = set(p for n, p in aux_parameters) 

    num_aux_params = sum([np.prod(p.size()) for p in aux_param_set]) 

     

    logging.info("There are " + str(num_aux_params) + " aux_parameters") 

     

    # Make sure we don't have an intersection of parameters 

    parameters_name_set = set(n for n,p in parameters) 

    aux_parameters_name_set = set(n for n, p in aux_parameters) 

    assert len(parameters) == len(parameters_name_set) 

    assert len(aux_parameters) == len(aux_parameters_name_set) 

     

    inter_params = parameters_name_set & aux_parameters_name_set 

    union_params = parameters_name_set | aux_parameters_name_set 

    assert len(inter_params) == 0 

    assert len(union_params) - len(parameter_dict.keys()) == 0 

 

    optimizer = optim.Adam((p for (n, p) in parameters if p.requires_grad), 

                           lr=args.learning_rate) 

    aux_optimizer = optim.Adam((p for (n, p) in aux_parameters if 
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p.requires_grad), 

                               lr=args.aux_learning_rate) 

     

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', 

factor=0.5,  

                                                     patience=args.patience, 

min_lr=args.min_lr) 

     

    return optimizer, aux_optimizer, scheduler 

 

def load_optimizer(pretrained_dict, device, optimizer, aux_optimizer=None): 

    """ 

    Load the optimizer parameters from a dictionary that was saved using the 

save_model()  

    function. 

    """ 

    message = optimizer.load_state_dict(pretrained_dict["optimizer"]) 

     

    logging.info("Optimizer: " + str(message)) 

     

    if aux_optimizer: 

        aux_optimizer.load_state_dict(pretrained_dict["aux_optimizer"]) 

       

        logging.info("Aux Optimizer: " + str(message)) 

 

    return optimizer, aux_optimizer 

 

# ### Info passing during training and validation 

 

class Infographic(): 

    """ 

    Build a logging class to save & load the training results 

    """ 

    def __init__(self): 

        self.step_train_dist_loss = 0 

        self.step_train_rate_loss = 0 

        self.step_train_loss = 0 

        self.avg_psnr_dec = 0 

        self.avg_bpp = 0 

        self.avg_val_loss = 0 

         

        self.best_val_loss = 10**10 

        self.psnr_dec_at_best_loss = -1 

        self.bpp_at_best_loss = -1 

         

    def update_train_info(self, distortion_loss, rate_loss, loss): 

        self.step_train_dist_loss += distortion_loss 

        self.step_train_rate_loss += rate_loss 

        self.step_train_loss += loss 

     

    def zero_train_info(self): 

        self.step_train_dist_loss = 0 

        self.step_train_rate_loss = 0 

        self.step_train_loss = 0 

 

    def update_val_info(self, avg_val_loss, avg_psnr, avg_bpp): 

        self.avg_val_loss = avg_val_loss 

        self.avg_psnr_dec = avg_psnr 

        self.avg_bpp = avg_bpp 

     

    def update_best_val_info(self): 

        self.best_val_loss = self.avg_val_loss 
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        self.psnr_dec_at_best_loss = self.avg_psnr_dec 

        self.bpp_at_best_loss = self.avg_bpp 

8.6. Training Code 

import torch 

import numpy as np 

import os 

import sys 

import warnings 

 

warnings.filterwarnings('ignore') 

import imageio 

 

from compressai.zoo import mbt2018_mean 

 

try: 

    import wandb 

    wandb_exist = True 

except ImportError: 

    wandb_exist = False 

     

import argparse 

import logging 

import time 

 

from torch.utils.data import DataLoader, RandomSampler 

 

model_path = os.path.abspath('..') 

sys.path.insert(1, model_path) 

 

from model import b_model 

from utils import float_to_uint8, MSE, PSNR, calculate_distortion_loss 

from utils import VimeoTrainDataset, UVGTestDataset 

from utils import image_compress, save_model, load_optimizer 

from utils import configure_seeds, configure_optimizers 

from utils import load_model, Infographic 

 

# Argument parser 

parser = argparse.ArgumentParser() 

 

# Hyperparameters, paths and settings are given 

# prior the training and validation 

parser.add_argument("--project_name", type=str, default="ICIP2022")   # Project 

name 

parser.add_argument("--model_name", type=str, 

default="BidirRefinement_finetune_logloss")       # Model name 

parser.add_argument("--random_seed", type=int, default=None) # Get the seeds if 

available 

parser.add_argument("--torch_seed", type=int, default=None) 

parser.add_argument("--train_path", type=str, 

default="/datasets/vimeo_septuplet/sequences/")   # Dataset paths 

parser.add_argument("--val_path", type=str, 

default="/scratch/users/ecetin17/UVG/full_test/") 

parser.add_argument("--total_train_step", type=int, default=200000) # # of total 

iterations 

parser.add_argument("--train_step", type=int, default=5000) # # of iterations 

for recording 

parser.add_argument("--learning_rate", type=float, default=1.e-5)# learning rate 

parser.add_argument("--aux_learning_rate", type=float, default=1.e-3) 

parser.add_argument("--min_lr", type=float, default=1.e-7)       # min. learning 

rate 

parser.add_argument("--patience", type=int, default=20)          # scheduler 

patience 
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parser.add_argument("--batch_size", type=int, default=4)         # Batch size 

parser.add_argument("--patch_size", type=int, default=256)       # Train patch 

sizes 

parser.add_argument("--train_gop_size", type=int, default=8)     # Train gop 

sizes 

parser.add_argument("--train_num_frames", type=int, default=3)   # Train number 

of frames 

parser.add_argument("--train_skip_frames", type=int, default=2)  # Train number 

of frames skipped 

 

parser.add_argument("--val_gop_size", type=int, default=8)       # Val gop sizes 

parser.add_argument("--val_numbers", type=int, default=1)        # How many 

times to validate on a video 

parser.add_argument("--val_skip_frames", type=int, default=1)    # Val number of 

frames skipped 

 

parser.add_argument("--N_b", type=int, default=128)              # Number of 

channels for B-comp, N 

parser.add_argument("--b_save_dir", type=str, default="../BidirRef.pth")  # Save 

file for the bidir. compressor 

 

parser.add_argument("--device", type=str, default="cuda")        # device "cuda" 

or "cpu" 

parser.add_argument("--workers", type=int, default=4)            # number of 

workers 

 

# We don't take any pretrained models for initial trainings (except I-frame 

compressor and optical flow, which are loaded in the code) 

parser.add_argument("--pretrained", type=str, default="../BidirRef.pth")                        

# Load model from this file 

 

parser.add_argument("--cont_train", action='store_true', default=False)                         

# load optimizer 

parser.add_argument("--wandb", action='store_true', default=False)                              

# Store results in wandb 

parser.add_argument("--log_results", action='store_false', default=True)                        

# Store results in log 

 

args = parser.parse_args() 

args.save_name = args.model_name 

 

logging.basicConfig(filename= args.save_name + ".log", level=logging.INFO) 

 

rng = configure_seeds(args.random_seed, args.torch_seed) 

device = torch.device(args.device) 

 

# CompressAI trade-off values (For each trade-off, we pick one above I-

compressor quality mbt2018_mean) 

args.betas_mse = torch.tensor([0.0067*(255**2), 0.0250*(255**2), 

0.0483*(255**2),  

                               0.0932*(255**2)]).to(device)                                     

args.num_i = (5, 6, 7, 8)                        # beta for rate-distortion 

trade-off 

args.levels = args.betas_mse.shape[0]            # Number of points on rate-

distortion curve                                               

 

coding_order = [0, 8, 4, 2, 1, 3, 6, 5, 7]       # Frame order for decoding 

# prev_frame, future_frame, frame_level 

decoding_info = {4: [0, 8], 2: [0, 4], 1: [0, 2], 3: [2, 4], 6: [4, 8], 5: [4, 

6], 7: [6, 8]} 

 

# ### Training Function 
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def train_one_step(im_batch, model, im_models, optimizer, aux_optimizer, betas, 

device): 

    """ 

    im_batch: video frames of shape (b, c * gop_size, h, w) 

    model: B-frame compressor model 

    im_models: Image compressor models 

    optimizer: Optimizer of the model 

    aux_optimizer: Auxiliary optimizer for the entropy model 

    betas: Rate-distortion tradeoff (distortion coeff.) 

    device: cuda or cpu 

    """ 

     

    x0 = im_batch[:, 0:3] 

    x1 = im_batch[:, 3:6] 

    x2 = im_batch[:, 6:9] 

     

    # Losses for each layer 

    dist_loss = 0 

    rate_loss = 0 

     

    dec0, dec2 = {}, {} 

    streams = {} 

     

    for i in range(args.levels): 

        streams[i] = torch.cuda.Stream(device=device) 

     

    level_b = torch.arange(0, args.levels).to(device) 

     

    level_i = torch.clamp( 

        level_b + torch.clamp( 

            torch.abs(torch.round(torch.randn(args.levels).to(device))), max=2 

        ), min=0, max=args.levels-1 

    ).long() 

     

    with torch.no_grad(): 

        torch.cuda.synchronize() 

       

        with torch.cuda.stream(streams[0]): 

            dec0[0] = im_models[level_i[0]](x0[0].unsqueeze(0))["x_hat"] 

            dec2[0] = im_models[level_i[0]](x2[0].unsqueeze(0))["x_hat"] 

         

        with torch.cuda.stream(streams[1]): 

            dec0[1] = im_models[level_i[1]](x0[1].unsqueeze(0))["x_hat"] 

            dec2[1] = im_models[level_i[1]](x2[1].unsqueeze(0))["x_hat"] 

         

        with torch.cuda.stream(streams[2]): 

            dec0[2] = im_models[level_i[2]](x0[2].unsqueeze(0))["x_hat"] 

            dec2[2] = im_models[level_i[2]](x2[2].unsqueeze(0))["x_hat"] 

         

        with torch.cuda.stream(streams[3]): 

            dec0[3] = im_models[level_i[3]](x0[3].unsqueeze(0))["x_hat"] 

            dec2[3] = im_models[level_i[3]](x2[3].unsqueeze(0))["x_hat"] 

         

        torch.cuda.synchronize(device=device) 

         

        dec0 = torch.cat(tuple(dec0.values()), dim=0) 

        dec2 = torch.cat(tuple(dec2.values()), dim=0) 

 

    output = model( 

        x_before=dec0,  

        x_current=x1, 

        x_after=dec2, 

        n=level_b, 
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        l=1, 

        train=True 

    ) 

    

    dist_loss = betas * calculate_distortion_loss(output["x_hat"], x1, dim=(1, 

2, 3)) 

    rate_loss = output["rate"] 

    loss = dist_loss + rate_loss 

     

    loss = torch.exp(torch.mean(torch.log(loss))) 

    dist_loss = torch.exp(torch.mean(torch.log(dist_loss))) 

    rate_loss = torch.exp(torch.mean(torch.log(rate_loss))) 

    

    # AUXILIARY LOSS 

    aux_loss = (model.flow_compressor.aux_loss() + 

model.residual_compressor.aux_loss()) 

   

    optimizer.zero_grad() 

    aux_optimizer.zero_grad() 

 

    loss.backward() 

    aux_loss.backward() 

 

    torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) 

 

    optimizer.step() 

    aux_optimizer.step() 

     

    return dist_loss.item(), rate_loss.item(), loss.item() 

 

# ### Validation Function 

 

def validate(model, im_models, betas, device, args): 

    """ 

    test_loader: Test loader for UVG 

    model: B-frame compressor model 

    im_models: Image compressor model 

    alpha: Rate-distortion tradeoff (distortion coeff.) 

    device: cuda or cpu 

    """ 

    with torch.no_grad(): 

        coding_order_eff = coding_order[2:] 

         

        rate_loss = 0 

        dist_loss = 0 

        total_loss = 0 

         

        folder_names = ["beauty", "bosphorus", "honeybee", "jockey", "ready", 

"shake", "yatch"] 

         

        psnr_dict = {k: 0 for k in range(args.levels)} 

        size_dict = {k: 0 for k in range(args.levels)} 

        frame_num_dict = {k: 0 for k in range(args.levels)} 

        pixel_num_dict = {k: 0 for k in range(args.levels)} 

     

        test_dataset = UVGTestDataset( 

            args.val_path,  

            folder_names,  

            gop_size=args.val_gop_size, 

            skip_frames=args.val_skip_frames,  

            test_size=args.val_numbers 

        ) 
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        h, w, _  = test_dataset.orig_img_size 

                 

        # To adjust the bidirectional scheme, we increase the batch size by 1 

        test_loader = DataLoader(test_dataset, batch_size=args.val_gop_size+1, 

shuffle=False, num_workers=args.workers) 

         

        decoded = {} 

 

        # Loading videos in batches of form I-B-B-B-B-B-B-B-I 

        for idx, gop in enumerate(test_loader): 

            gop = gop.unsqueeze(1).to(device) 

            # _, _, h, w = gop[0].shape 

             

            for level in range(args.levels): 

 

                # If first batch of video, we compress the first frame with I-

compressor 

                if idx % args.val_numbers == 0: 

                    decoded[level] = {} 

                    dec0 = im_models[level](gop[0]) 

                    decoded[level][0] = dec0["x_hat"] 

 

                dec_last = im_models[level](gop[-1]) 

                decoded[level][coding_order[1]] = dec_last["x_hat"] 

 

                for order in coding_order_eff: 

                    output = model( 

                        x_before=decoded[level][decoding_info[order][0]],  

                        x_current=gop[order], 

                        x_after=decoded[level][decoding_info[order][1]], 

                        n=[level], 

                        l=1, 

                        train=False 

                    ) 

                    decoded[level][order] = output["x_hat"] 

 

                    cur_dist_loss = betas[level] * 

calculate_distortion_loss(output["x_hat"], gop[order], dim=(0, 1, 2, 3)) 

                    cur_rate_loss = output["rate"].squeeze(0) 

                    cur_loss = torch.exp(torch.mean(torch.log(cur_dist_loss + 

cur_rate_loss))) 

                    total_loss += cur_loss 

                     

                    uint8_real = float_to_uint8(gop[order][0, :, :h, :w]) 

                    uint8_dec_out = float_to_uint8(output["x_hat"][0, :, :h, 

:w]) 

                     

                    cur_psnr = PSNR( 

                        MSE(uint8_dec_out.type(torch.float), 

uint8_real.type(torch.float)),  

                        data_range=255 

                    ) 

 

                    psnr_dict[level] += cur_psnr 

                    size_dict[level] += output["size"].squeeze(0) 

                    frame_num_dict[level] += 1 

                    pixel_num_dict[level] += uint8_real.shape[1] * 

uint8_real.shape[2] 

                     

                decoded[level] = {0: dec_last} 

             

    total_frames = sum(frame_num_dict.values(), 0.0) 

    total_pixels = sum(pixel_num_dict.values(), 0.0) 



Page 50 of 53 

 

    total_size = sum(size_dict.values(), 0.0) 

    total_psnr = sum(psnr_dict.values(), 0.0) 

     

    average_bpp_dict = {k: (v / pixel_num_dict[k]).item() for k, v in 

size_dict.items()} 

    average_psnr_dict = {k: (v / frame_num_dict[k]).item() for k, v in 

psnr_dict.items()} 

     

    average_psnr = total_psnr / total_frames 

    average_loss = total_loss / total_frames 

    average_bpp = total_size / total_pixels 

 

    return average_loss.item(), average_psnr.item(), average_bpp.item(), 

average_psnr_dict, average_bpp_dict 

 

# ### Main Function 

# We just train the b-coding model 

 

def main(args): 

     

    if args.wandb and wandb_exist: 

        wandb.init( 

            project=args.project_name,  

            name=args.model_name,  

            config=vars(args) 

        ) 

         

    image_compressors = [mbt2018_mean(q, "mse", 

pretrained=True).to(device).float()  

                         for q in args.num_i] 

     

    for idx, image_compressor in enumerate(image_compressors): 

        for param in image_compressor.parameters(): 

            param.requires_grad = False 

             

        image_compressors[idx] = image_compressor.eval() 

     

    # Build the model 

    model = b_model.BidirFlowRef(n=args.levels, N=args.N_b).to(device).float() 

     

    infographic = Infographic() 

     

    if args.pretrained: 

        checkpoint = torch.load(args.pretrained, map_location=device) 

        model = load_model(model, checkpoint, exceptions=[]) 

         

        model = model.eval() 

             

        avg_val_loss, avg_psnr, avg_bpp, avg_psnr_dict, avg_bpp_dict = validate( 

            model=model, 

            im_models=image_compressors, 

            betas=args.betas_mse, 

            device=device, 

            args=args 

        ) 

         

        infographic.update_val_info(avg_val_loss, avg_psnr, avg_bpp) 

        infographic.update_best_val_info() 

        logging.info(f"Initial validation loss: {avg_val_loss}") 

        logging.info(f"Initial PSNR: {avg_psnr}") 

        logging.info(f"Initial bpp: {avg_bpp}") 

        logging.info("Initial Best Validation loss: " + 

str(infographic.best_val_loss)) 
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        logging.info("Initial PSNR at best Validation loss: " + 

str(infographic.psnr_dec_at_best_loss)) 

        logging.info("Initial bpp at best Validation loss: " + 

str(infographic.bpp_at_best_loss)) 

         

        infographic = Infographic() 

 

    optimizer, aux_optimizer, scheduler = configure_optimizers(model, args) 

     

    # If we want to continue training using a checkpoint we load the optimizers 

& scheduler                      

    if args.cont_train: 

        optimizer, aux_optimizer = load_optimizer( 

                                       checkpoint=checkpoint,  

                                       device=device, 

                                       optimizer=optimizer,  

                                       aux_optimizer=aux_optimizer 

                                   ) 

        scheduler.load_state_dict(checkpoint["scheduler"]) 

     

    model_parameters = filter(lambda p: p.requires_grad, model.parameters()) 

    params = sum([np.prod(p.size()) for p in model_parameters]) 

     

    if args.wandb and wandb_exist: 

        wandb.config.update({"Num. params": params}) 

     

    if args.log_results: 

        logging.info("Num. params: " + str(params)) 

 

    train_dataset = VimeoTrainDataset( 

                        args.train_path,  

                        patch_size=args.patch_size, 

                        gop_size=args.train_gop_size,  

                        skip_frames=args.train_skip_frames, 

                        num_frames=args.train_num_frames, 

                        rng=rng, 

                        dtype="png" 

                    )                     

    train_sampler = RandomSampler(train_dataset, replacement=True) 

 

    time_start = time.perf_counter() 

     

    # If we want to continue training using a checkpoint we load the number of 

iterations 

    if args.cont_train: 

        iteration = checkpoint["iter"] 

    else: 

        iteration = 0 

         

    model = model.train() 

       

    while iteration <= args.total_train_step: 

        train_loader = DataLoader(train_dataset, batch_size=args.batch_size, 

sampler=train_sampler, num_workers=args.workers, drop_last=True) 

 

        for gop_im_batch in train_loader: 

          

            dist_loss, rate_loss, loss = train_one_step( 

                im_batch=gop_im_batch.to(args.device).float(),  

                model=model, 

                im_models=image_compressors, 

                optimizer=optimizer,  

                aux_optimizer=aux_optimizer,  
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                betas=args.betas_mse, 

                device=device 

            ) 

              

            infographic.update_train_info(dist_loss, rate_loss, loss) 

            iteration += 1 

 

            if iteration % args.train_step == 0: 

                 

                model = model.eval() 

             

                avg_val_loss, avg_psnr, avg_bpp, avg_psnr_dict, avg_bpp_dict = 

validate( 

                    model=model, 

                    im_models=image_compressors, 

                    betas=args.betas_mse, 

                    device=device, 

                    args=args 

                ) 

 

                infographic.update_val_info(avg_val_loss, avg_psnr, avg_bpp) 

 

                scheduler.step(avg_val_loss) 

                learning_rate = optimizer.param_groups[0]["lr"] 

 

                time_end = time.perf_counter() 

                duration = time_end - time_start 

 

                if avg_val_loss < infographic.best_val_loss: 

                    # Save every submodule of the model separately 

                    save_model( 

                        model=model,  

                        optimizer=optimizer,  

                        aux_optimizer=aux_optimizer,  

                        scheduler=scheduler,  

                        num_iter=iteration, 

                        exceptions=[],  

                        save_name= args.b_save_dir 

                    ) 

                     

                    infographic.update_best_val_info() 

                     

                    if args.log_results: 

                        logging.info("********** NEW BEST! **********") 

                 

                # Log to wandb if supported 

                if args.wandb and wandb_exist: 

                    wandb_dict = { 

                        "Time": duration, 

                        "Learning rate": learning_rate, 

                        "Distortion loss": infographic.step_train_dist_loss / 

args.train_step, 

                        "Rate loss": infographic.step_train_rate_loss / 

args.train_step, 

                        "Train loss": infographic.step_train_loss / 

args.train_step, 

                        "Validation PSNR": infographic.avg_psnr_dec, 

                        "Validation bpp": infographic.avg_bpp, 

                        "Validation loss": infographic.avg_val_loss, 

                        "Best Validation loss": infographic.best_val_loss, 

                        "PSNR at best Validation loss": 

infographic.psnr_dec_at_best_loss, 

                        "bpp at best Validation loss": 
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infographic.bpp_at_best_loss, 

                    } 

                    for k in avg_psnr_dict.keys(): 

                        wandb_dict[f"Level {k} PSNR"] = avg_psnr_dict[k] 

                        wandb_dict[f"Level {k} bpp"] = avg_bpp_dict[k] 

                            

                    wandb.log(wandb_dict, step=iteration) 

                     

                # Log to logfile if wanted 

                if args.log_results: 

                    logging.info("Iteration: " + str(iteration)) 

                    logging.info("Time: " + str(duration)) 

                    logging.info("Learning rate: " + str(learning_rate)) 

                    logging.info("Distortion loss: " + 

str(infographic.step_train_dist_loss / args.train_step)) 

                    logging.info("Rate loss: " + 

str(infographic.step_train_rate_loss / args.train_step)) 

                    logging.info("Train loss: " + 

str(infographic.step_train_loss / args.train_step)) 

                    logging.info("Validation PSNR: " + 

str(infographic.avg_psnr_dec)) 

                    logging.info("Validation bpp: " + str(infographic.avg_bpp)) 

                    logging.info("Validation loss: " + 

str(infographic.avg_val_loss)) 

                    logging.info("Best Validation loss: " + 

str(infographic.best_val_loss)) 

                    logging.info("PSNR at best Validation loss: " + 

str(infographic.psnr_dec_at_best_loss)) 

                    logging.info("bpp at best Validation loss: " + 

str(infographic.bpp_at_best_loss)) 

                    logging.info("---------------------------------") 

                    logging.info("-- PSNR per level --") 

                    for k, v in avg_psnr_dict.items(): 

                        logging.info("Level " + str(k) + " PSNR: " + str(v)) 

                    logging.info("-- bpp per level --") 

                    for k, v in avg_bpp_dict.items(): 

                        logging.info("Level " + str(k) + " bpp: " + str(v)) 

                    logging.info("*********************************") 

 

                infographic.zero_train_info() 

                 

                # Take the model back into training mode                                                                   

                model = model.train() 

                time_start = time.perf_counter() 

               

            if iteration >= args.total_train_step: 

                break 

 

if __name__ == '__main__': 

    main(args) 


