&%, KOC UNIVERSITY

U

College of Engineering
ELEC 491 - Electrical Engineering Design Project
Final Report

Flexible-Rate Bidirectional Video Compression with
Motion Refinement

Participant Information:

Eren Cetin — 64277

Project Advisor(s)
Ahmet Murat Tekalp
Ogun Kirmemis

19.01.2022

Abstract

Video content has been becoming more prevalent in the last decade by capturing 80% of the
online data. As this is the case, more efficient video compression methods are helpful to provide a
better service for people who stream online video content with a limited bandwidth. For that reason,
our aim is to develop a learned bidirectional video compression framework that achieves superior or
competitive rate-distortion performance compared to other works in the literature of video
compression. To achieve the desired results, we employ additional modules such as bidirectional
motion prediction, motion refinement, learned frame fusion and achieve flexible bitrate using a single
model with learned quantization parameters. Testing our network on UVG dataset, a common
benchmark, we achieve competitive or superior results at high bitrates when we compare our results
with other learned video compression networks such as DVC [1], Scale-Space Flow [2], RLVC [3],
and LHBDC [4] in terms of PSNR and MS-SSIM scores. On the other hand, the model achieves
slightly worse rate-distortion performance at low bitrates compared to LHBDC [4] and the traditional
SVT-HEVC codec at very slow preset in terms of PSNR and MS-SSIM. In the following report,
further details of the proposed network are provided extensively with visual results that demonstrate

the effect of main modules.

Page 2 of 53

Table of Contents

N oL = Tod P OTUS TR RPR 2
IO 1011 €0 [N £ [0 o PSSP PP 4
1.1. (O0] 0 01T o | TR TSP PP PSPPI 4
1.2. IMAGE COMPIESSION ...ttt bbbttt b b bbb ene s 5
1.3. VAT (= Lol O] T o] £=151S] o] ISR 5
2. REIAIEA WOTK ...ttt sttt e be e besne e sbeeteaneesneenae s 7
2.1. Joint Autoregressive and Hierarchical Priors for Learned Image Compression.......... 7
2.2. Deep Video Compression Framework (DVC)cccvovviveiiiie i 8
2.3. SCalE-SPACE FIOW (SSF) ...ttt 9
2.4. Asymmetric Gained Deep Image Compression with Continuous Rate Adaptation ..10
2.5. End-to-End Rate-Distortion Optimized Learned Hierarchical Bi-Directional Video

(O00] 0] o 111 0] OO TSPV TR U R US PP PR PPV 11
K T YL (= 1 1= [OSSR 13
3.1 OVBIVIBW ...ttt bbbttt et bbb bbb et et ettt e et e neenes 13
3.2. MOtion VECTOr PrediCtiONcceviiieiiece et 15
3.3. MOtION REFINEMENL........oiiiiiiiice e e 16
3.4. Gain and INVerse Gain UNit........coooiiieiiiiiisieeee e 17
3.5. Learned Frame FUSIONc.oiiiiiieiiere ettt esne s 19
3.6. Residual COMPIESSIONccieivieiecie sttt e sreereenee e 20
R 1=] 11T] SRS SP PR 20
4.1. 1] (1] o T TP T ST T PP PR PR 20
4.2. DALASELS ...ttt bbbt e e ne e 20
4.3. LLOSS FUNCHIONS ...ttt sttt et be b sbesrenneas 21
44. TraiNiNg DEtaAIlSc.oiiiie e 22
5. ANAlYSIS AN RESUILSooivieiicie ettt e e s reeaeeneenas 23
5.1. QUANTITALIVE RESUILSvviiveecie ettt beeenees 23
5.2. QUANTALIVE RESUILSieieceieece ettt eeenee e 25
T O3 Tod 111 (] o USSR RP PPN 26
T RETEIBINCES ...ttt bt bbbttt b ettt ns 28
B ADPENTICES ...ttt bbbttt bbb nne s 29
8.1. Environment (LYMIFIle)cooiiiieee e 29
8.2. U-NEE COUE [L6].eveveereeiieiierieieie ettt sttt b sbesteeneeneas 31
8.3. LAYEIS COUB. ...ttt bbbt bbbttt n bbb b e ene s 33
8.4. MOGEI COUE ...ttt sttt st enbe e b nne e e 36
8.5. L 1) O o PSP 39
8.6. TrAINING COUR ... bbbttt bbb b 45

Page 3 of 53

1. Introduction
1.1. Concept

Compression is an important part of our life, allowing us to use internet and many other data
sources that would be impossible to reach if we had to store or download raw data without
compression. Thanks to Claude Shannon, information theory has brought the age of information with
his celebrated paper defining the information in 1948. He defined the information in terms of “bits”
and provided entropy as a quantitative tool to measure the amount of information. That way,

information can be thought as an increasing function of uncertainty that relies in a signal.

In addition to defining the information in terms of “bits”, he demonstrated that there exists a
maximum rate of transmission over a channel, which we call the bandwidth of a channel.
Accordingly, it is possible to transmit error-free signals as long as transmission rate is less than the
channel capacity. Although inventions in communication have been allowing to reach closer to the
theoretical limit, the available bandwidth has always been a bottleneck in information transfer,

limiting many applications including video livestreaming or playing online games.

As this limit cannot be overcome, one possible solution is compressing the information that is
intended to be transmitted. However, Shannon has once again demonstrated a limit for the
compression rate that cannot be overcome. This lower limit is the entropy of the signal of interest.
Since this limit cannot be exceeded for lossless compression, the aim in applications of lossless image

compression and video compression is to reach as close as possible to the lower bound.

In contrast to lossless compression, the human visual system is less sensitive to high frequency
content which makes it logical to consider lossy compression as a favorable option to get rid of high
frequency content on an image or video. That way, the lower bound can be eliminated while the
distortion on the image or video is minimized with respect to human perception. Because it allows a
greater compression rate and minimizes the distortion on images, lossy compression is widely
adopted in today’s applications that do not require a perfectly reconstructed image. Today, almost all
image and video content on the internet are examples of lossy compression as lossless compression

is not necessary in many applications such as social media and video streaming.

As the raw data consists of redundancies such as temporal or spatial redundancies, certain
transform operations can reduce the entropy of data and allow a more efficient compression with
entropy coding. Since the data after transform must be quantized for compression, the quantization
prevents the one-to-one mapping between encoding and decoding; thus, induces loss of information
during lossy compression. For the rest of this report, we will be only concerned with lossy

Page 4 of 53

compression as it has a wider field of application for image and video compression.

1.2. Image Compression

Image compression is an important step towards video compression as videos are composed of
many temporally linked images. Image compression is possible because of the spatial correlation
between individual pixels on an image. Consider a scene where the picture is divided between sky
and ground. As the sky would be mostly blue and have less change in a close neighborhood, it might
be enough to send very few symbols for a large region. On the other hand, in images which contain
highly non-uniform shapes and structures (such as a city scene with many color variations), the

correlation between pixels is reduced, thus, we require more bits to build the image back.

Fixed Entropy
—> eSO 3 Quantization > Encoding ——3» Channel

Inverse | Entropy
<« s <—{Dequantization | €— Decoding

Figure 1. The framework of lossy image compression.

Considering the framework for the lossy image compression as described in Figure 1, we initially
map the pixel domain representation of our image into a latent representation. The operation provides
a one-to-one mapping; however, the quantization step causes information loss as the operation is not
reversible. As the quantization steps become larger, the amount of distortion in our decoded image
also increases. After the image is quantized, an entropy coder is used to compress the latent
representation in a lossless manner. Subsequently, the decoder decodes the latent representation,

dequantizes it and transforms it back into pixel domain.

1.3. Video Compression

Today, over 80% of the data on the internet is composed of video data [5]. This percentage is
only expected to increase with newer technologies and more demand for entertainment through tech
companies such as Netflix, Google, and Amazon. For that reason, the research for more efficient
video compression methods has been in rise to transmit video content with less lagging and store it

in a smaller space.
In addition to the spatial correlation within the frames of a video, the frames have a high

Page 5 of 53

correlation as videos mostly do not have interruptions and have a smooth transition between frames.
For that reason, the video compression techniques also make use of the temporal correlation by
applying inter prediction techniques. To exploit the temporal correlation, video compression models
utilize motion estimation and compensation components as the motion information connects two

consequent frames to each other.

The importance of research on learned video compression comes from the capability of
performing nonlinear transforms with deep neural networks. Although traditional video codecs are
still in employment, they can only perform linear transforms that can fall short for decorrelation of
information and entropy reduction. Furthermore, the combinatorial nature of video codecs causes a
great problem for defining the optimal video codec. As learned video codecs can be optimized in an
end-to-end manner with a single rate-distortion loss, the optimality is less of a concern.

The problem that we have to address in video compression is a joint optimization problem which
considers several components of an autoencoder architecture. Autoencoder is composed of an encoder
and a decoder which has similar tasks as the traditional video codecs. While the encoder transforms
the pixel domain image representation into a latent representation with lower entropy, the decoder

transforms it back to the pixel domain representation while keeping the quality as high as possible.

For video compression, we encode and decode the motion vectors and the residual frames which
allow us to make use of the temporal correlation and reduce the entropy compared to single frame
image compression. To perform this operation, we utilize two separate autoencoders to compress the
motion vectors and the residual frames. In addition to the encoder and the decoder, the entropy coding
requires accurate estimation of entropy parameters in order to reduce the bitrate as much as possible.
Thus, each autoencoder architecture requires a prior network to estimate the mean and scale of the
latent representations. The bitrate is estimated with the entropy of our latent representations as entropy
coding is capable of achieving close to minimum bound bitrates. As the coding performance of our
network depends on the rate-distortion performance, we optimize the whole model using an end-to-

end approach with a single loss function and simultaneous optimization of all components.
1.4. Objectives

The objective of this project is to build a learned bidirectional video compression network that
can be optimized in an end-to-end manner and can achieve a competitive rate-distortion performance
compared to other works in the literature. As unidirectional video compression yields a worse rate-
distortion performance both in case of traditional codecs and learned codecs, our aim is to build a
bidirectional video compression network instead of a unidirectional compression network that can

Page 6 of 53

also achieve different bitrates by using a single network for all levels. That way we aim to reduce the
training cost and achieve a better generalization.

Furthermore, a major aim of this project is to improve over the bidirectional video compression
framework proposed by Yilmaz and Tekalp [4] with the use of special modules such as motion
prediction and motion refinement modules. In addition to these modules, we aim to achieve arbitrary

rate-distortion trade-offs using the gain unit proposed by Cui et al. [6] for image compression.

2. Related Work

Our model builds on the previous work that was presented in both image compression and video
compression domains. In following sections, the details of these prior works are explained while

comparing them with our proposed network.

2.1. Joint Autoregressive and Hierarchical Priors for Learned Image

Compression

For image compression, one important work is provided by Minnen et al. [7]. With their work,
Minnen et al. [7] propose a model that brings an improvement to the learned image compression
domain by modeling the probability distribution of image latent representations with a mean and a
scale value. Since the probability modeling has a high importance for entropy coding, the model can

lower the bitrate since the distribution can be better estimated.

v

Ty
]
(=)]
m
E
-
3
o
= s
Context

Model ___
c /' ? Factorized
.8 L ¥ L Entropy
%]
S| |2 Entropy 53 _ Model
Sled © Parameters |« a6 -
2l | @ N(, 6) 9
s| | o H. o
9]
@
o
—

Figure 2. The architecture of “Joint Autoregressive and Hierarchical Priors” network proposed by
Minnen et al. [7]

Furthermore, as depicted in Figure 2, the model proposes a causal context model to exploit the
spatial correlation further. That way, the entropy parameters (mean and scale) are estimated better to

encode the latent representation with a more precise probability estimation.

As the model provides well estimation of entropy parameters, the architecture is utilized in our
Page 7 of 53

model for the compression of motion vectors and residual frames thinking as if they were images that
are compressed with this model. Thus, this network has an important place in our proposed video

compression network.

2.2. Deep Video Compression Framework (DVC)

DVC model [1] is a pillar stone in the literature of end-to-end optimized deep video compression
networks. The model uses unidirectional motion vectors to use the temporal correlation between
frames and provide a low delay learned video codec. These motion vectors are composed of two

channels where the channels represent the shift in a pixel in horizontal direction and vertical direction.

Xt Residual =
Current Defocer Net
Frame £ | E
Y : 9
Y Q v
Xt Motion B Ly Bit Rate
Compensation Net *t Estimation Net

= 4
1% tt E mt
MV Decoder Net .

Decoded Frames Buffer

Figure 3. The architecture of DVC network proposed by Lu et al. [1]

Same as our model, the initial keyframes of the group of pictures is coded using a learned image
compression network while the rest of the frames of the group of pictures are compressed using the
network provided in Figure 3. First of all, the motion vectors are calculated using a learned motion
estimation network and the motion vectors are encoded into a latent representation. The latent
representation is quantized and passed to the decoder network that reverts the latent representation
back into motion vectors that were estimated by the encoder. Later on, a motion compensation
network performs bilinear warping on the last reference frame that is available to decoder with the
estimated and transmitted motion vectors. The warped frames are also processed by a motion
compensation network that aims to reduce the warping artifacts. That way, the motion compensated
frame is acquired. Finally, the residual frame is calculated by subtracting the ground truth frame from
the motion compensated frame and compressed with a similar architecture as the motion compression

network. The residual frame is added back to the motion compensated frame at the decoder side and

Page 8 of 53

the output frame is achieved. After compressing rest of the frames using the proposed network, the

loss is calculated over all frames where the loss is the rate-distortion loss.

2.3. Scale-Space Flow (SSF)

Similar to DVC [1], the Scale-Space Flow (SSF) model proposed by Agustsson et al. [2] separates
the motion and residual information and encodes them in separate autoencoder architectures.
However, the back warping operation that is utilized by the DVC [1] network yields motion
compensation artifacts that reduce the frame quality. This effect was avoided by employing a motion
compensation network to reduce the artifacts. With SSF model [2], the back warping operation is
replaced with scale-space warping. Scale-space warping adds a third channel to the motion vectors
called the scale channel and allows this third channel to resemble the uncertainty that is present in
difficult to predict areas of the frame. Using this channel, the scale-space warping operation blurs the
regions where the motion compensation would yield worse artifacts and blur these regions in order

to improve the frame quality while also reducing the entropy in the residual frames.

Current

reconstruction
First Previous A
: : Warped X
reconstruction reconstruction

prediction
“ T Scale Space ¥
0 “i-l Warping i (|>
g T
“0

Iz

)
]

First input Current input
frame frame

Figure 4. The architecture of the Scale-Space Flow network proposed by Agustsson et al. [2]

As depicted in Figure 4, the compression framework starts by coding the first frame of the group
of pictures using keyframe compression (I-compression) as a reference frame. Afterwards, the scale-
space flow autoencoder network takes the reference frame and the current input frame to construct a
scale-space flow by compressing the latent representations. Using the scale-space flow warping, the
reference frame is warped to acquire the motion compensated (warped) prediction frame and the
residual frame. Finally, the residual frame is compressed in a separate autoencoder network and the

reconstructed residual frame is added back to the warped prediction to achieve the reconstructed

Page 9 of 53

current frame.

The framework is similar to our network since the network does not compress the vectors that
contain the motion vectors but constructs the motion vectors using an autoencoder architecture after

giving reference and current frames as input.

2.4. Asymmetric Gained Deep Image Compression with Continuous Rate

Adaptation

The work of Cui et al. [6] does not provide a complete architecture for video or image
compression, however they demonstrate how usage of gain and inverse gain units can help in

achieving continuous rate-distortion curves and avoid training multiple networks.

36 Channel Influence (PSNR) 36 Scale Influence (PSNR)
35 35+
= 341 5 34
cl =
x 33 e 334
= =
wn n
o 32- o32-
31- 31-
---- Qriginal
305 10 20 30 30%0 02 o4 o6 08 10

Channel Index Scale Factor

Figure 5. The difference between channel influences on quality of reconstructed frame [6].

Since the latent representation of a frame or motion vector has to be quantized before entropy
coding, the quantization bin size has to be deduced. Instead of training separate networks to learn the
quantization bin size inherently through the convolution layers, Cui et al. [6] propose learning
channel-wise quantization parameters for different bitrate levels. They demonstrate that separate
channels have varying relative importance on frame quality in Figure 5. Thus, they propose that we
can scale the channels with different parameters before the quantization step and learn the scale

parameters during the training.

The gain and inverse gain units are used to scale the latent representation by multiplying each
channel with a different parameter for the respective bitrate level and change the quantization bin size
effectively. The scaling parameters of the gain and inverse gain units are paired with each bitrate level
and rate-distortion trade-off value. After achieving a latent representation from the encoder, the latent
representation is multiplied by the channel-wise scaling vector (gain vector) of the gain module. Then,
the multiplied latent representation is quantized and passed to the decoder. The decoder performs an

inverse scaling operation by multiplying the quantized and reconstructed latent representation with
Page 10 of 53

its own learned channel-wise scaling parameters. Subsequently, the decoder decodes the latent
representation. These scaling parameters are learned throughout the training and can be thought of as
vectors which multiply the channels of latent representations.

The work of Cui et al. [6] has an important place in our network as it allows the adoption of
flexible rate in our model without training separate instances. Although they propose the use of gain
and inverse gain units in image compression, our model successfully integrates these components
into video compression framework by using them in autoencoders of both motion compression and

residual compression modules.

2.5. End-to-End Rate-Distortion Optimized Learned Hierarchical Bi-Directional

Video Compression

Yilmaz and Tekalp [4] design a learned hierarchical bidirectional video compression network
(LHBDC) to demonstrate the superior results that can be achieved with hierarchical bidirectional
video coding frameworks compared to sequential video compression frameworks. They propose
encoding videos with group of picture size of 8 frames and K = 3 hierarchical levels. Their proposed
method compresses first reference frames as keyframes while compressing every other frame in

between the initial reference frames as bidirectional predicted frames.

— 6D
& : T }
Xi—X,
[3 s + ——> wap
\ Xp
L My . 4 A
XXy T Bitstream l
) X
Motion A pit
me .o Estimation : !
XX, : 1
. e : 3 3
Motion : Motion _
Estimation | < \ Xt ' (™ Compensation | X
— —> Quantize
My, X L 5 _ Motion T
Estimation Motion Compression X/
5t
L] X My %, l v T
1 + ——> wap
e 3] Pt
x?&

Figure 6. The architecture of LHBDC proposed by Yilmaz and Tekalp [4].

After compressing the initial keyframes at hierarchical level K = 1 using the version of learned
still-image compression network proposed by Cheng et al. [8] without attention layers, the rest of the

frames (7 frames) are coded bidirectionally using the network in Figure 6 with the initial keyframes

Page 11 of 53

as reference frames. The bidirectional predicted frames take the closest decoded past and future

frames as reference frames for the backward and forward motion estimation and compensation.

To perform bidirectional compression, the network initially estimates the motion vectors from the
past and future decoded reference frames to the current frame. The estimation is performed by SPyNet
[9] pretrained motion estimation network. Simultaneously, the motion vectors between the past and
future decoded reference frames are also estimated with the same network to be used for the prediction
of motion vectors. Making a linear motion assumption, Yilmaz and Tekalp [4] assumes that the half
of the motion vectors between the past and future reference frames should yield a close prediction for
the motion vectors between the past reference frame and the current frame. Calling the halved motion
vectors between the past and future reference frames as predictions, they subtract these predictions
from the motion vectors between the past reference frame and the current frame and repeat the same
operation for the motion vectors between the future reference frame and the current frame. That way,
they aim to compress the residual motion vectors which are the subtracted deviations from the
predicted motion vectors. The residual motion vectors are then subsampled using a cubic filter to use
less bits. The subsampled vectors are then compressed using a network that is a version of network

by Minnen et al. [7] with residual blocks.

After reconstructing the residual motion vectors at the decoder side, these vectors are
interpolated using a bicubic filter and added back to the predicted motion vectors and used to warp
the reference frames to acquire the current frame. In order to utilize the bidirectional motion
information, the two warped frames are fused using a motion compensation mask that is constructed
with a U-Net architecture and warped frames as inputs. The fused frame is the final motion
compensated frame that allows to compute the residual frame by subtracting it from the current frame.
Finally, the residual frame is compressed with an autoencoder network that is similar to the motion
compression network. The residual frame is added back to the motion compensated frame after it is

reconstructed at the decoder to form the final reconstructed current frame.

As our model is designed in collaboration with Yilmaz and Tekalp, we adopt some components
from their previous work with many adjustments. First of all, our framework uses a different keyframe
compression network. Although the hierarchical structure of our bidirectional compression
framework is same as the LHBDC, we do not assume linear motion and thus employ a non-linear
motion prediction network. Furthermore, we perform motion refinement on top of the motion
prediction and do not use the motion residual with an explicit subtraction operation. As our motion
compression network has a similar input-output relation to the SSF [2] model which has frames as

inputs and flow information as output, we have a significant difference from the LHBDC network.

Page 12 of 53

Finally, our motion compression module also transfers the frame fusion mask to the decoder side as

extra information whereas the LHBDC computes the mask using an additional network.

3. System Design

In order to build our video compression model, many trials are performed with different units
such as deformable convolutions instead of bilinear warping with optical flow. In addition, the trials
included working with a composite video compression framework that utilized both predicted-frames
and bidirectional-frames that make use of unidirectional and bidirectional motion information,
respectively. However, our trials with given variations did not yield satisfactory results; thus, our
final trial with bidirectional video compression framework with motion refinement has been chosen

as our best performing network.

As bidirectional video compression networks make use of motion information both in forward
and backward directions in time, they are capable of achieving superior gains over unidirectional
video compression networks. Resulting from this fact, our model achieves a competitive rate-
distortion performance compared to other works in the literature. In the following sections, the basic
building blocks of the model will be illustrated in detail with visual performance evaluations and

architectural details.

3.1. Overview

Our model is composed of four main building blocks. These blocks are motion prediction, motion
compression, learned frame fusion and residual compression modules which allow us to achieve a
high compression rate with a low distortion cost. As each module is composed of differentiable

operations, our model is suitable for end-to-end training using a single loss function.

Similar to work by Yilmaz and Tekalp [4], our work is trained and tested for a group of pictures
of 8 frames and K = 3 hierarchical levels as displayed in Figure 7. In the proposed framework, the
first frame of each group of pictures is coded as a keyframe, thus its compression does not make use

of temporal correlation with previous or future frames.

For the keyframe compression, our model utilizes the learned image compression model proposed
by Minnen et al. [7]. However, we do not use the context model that is proposed as it brings a
significant slowdown because of its sequential operation over the pixels of an image. The keyframe
compression model uses a hyperprior network which learns the entropy parameters of a frame and
uses Gaussian distribution for probability modelling. That way, the model is capable of using
arithmetic coding after determining the probability distribution over the pixels of an image.

Page 13 of 53

Image
X) X
U Compression =)

A A

X \(Bi-directional o
LCompression 3 (deo)
x J Bi-directional X
g 'E:ompressiun 2 A=)
1 ¥
o ‘(Bi-directional 5
2 ’Fompressiun 3 A

X Bi-directional X
£ Compression 1 D)
x Ell directional x
e ompressmn A=)
r Y
Bi-directional
X > h—} X
v LCompression 2 7)
(Bi-directional
X,
%8 LCompressmn 3 8 (dec)

~
Image
X Xg
2 Compression SIEEE)

Figure 7. Coding scheme of the proposed model in a single group of pictures. In a group of pictures,

only the first frame is intra-coded while the rest of the frames are coded in a bidirectional manner.

Motion Prediction Motion Compression Residual Compression
1
T T3 z2 ﬁ residual
, 1 v \f
—
v T332
) Y Encoder Leom
Motion Prediction 2
Network
J L1
[
y v

mu1-—»2 | MU3—»2

v

Inverse Gain Unit
Bilinear
arping
¥

Decoder
;Bilinear
?Tarping / *—l \—v

— — — — —
MU1— =2 mug_za || | 12 Ty -2 residual

I
)

Figure 8. Overview of the proposed network architecture

Bilinear Warping

+ Fusion

After compressing the first frames of two consequent group of pictures using the keyframe
compressor described above, other frames are compressed using our bidirectional compression model
depicted in Figure 8. The keyframes are used as reference frames of the middle frame that relies in
the hierarchical level K = 1, for the prediction of motion vectors and current frame. For all other

frames of the group of pictures, we take past and future frames that are in one lower hierarchical level

Page 14 of 53

as the backward and forward reference frames. For each frame, our model uses same parameters in
the inference time. Because there exist seven frames in a group of pictures other than the keyframe,
our model has to run seven times to encode and decode these seven frames. The separate components
that bring increased compression efficiency to our model are described in following sections from
Section 3.2 to Section 3.7.

3.2. Motion Vector Prediction

To reduce the temporal redundancy further and make use of the correlation between frames, we
utilize a motion prediction network that has a U-Net architecture as depicted in Figure 9. Because of
its architecture, the network is capable of learning a multiscale representation of frames and predicting

the motion vectors more accurately.

— — — — — — — — — — —
o (o] | S I MERIEE o

o i 5 oo © o - © oo - - ~

=3 o™ <t Te} <t o™

2 o |e| | &) o & S| e ® %
< x ; ; [5] > x' 3 Q

£ S |8l (&l |8l [8l 2] |5l 5|8l 18| |=m

= aPaPaaaEZaP2Pa>a® 2P

=4 = 2 = = = c 5) > > [=]

< s 51 c c (= [e] c e = c Q

= S 3 [S] /5] [s] Q o] 5] 8 8 kot

=) = (&} o (8] @ O o =4 2 =

3] 0 2| B | | B Z 5| |3 5] 5]

= =z = Q [} =z = 2

5 5 5 z z z = z z

@ = > =] = 35 =) =)

133 — S -/

5 r f

c

S

=

[=]

=

Figure 9. Motion vector prediction module architecture.

The motion vector prediction module takes two reference frames that are previously decoded and
predicts two motion vectors that are estimated from the past reference frame to current frame and
from the future reference frame to current frame. That way, we reduce the temporal redundancy by
not transmitting the predictions since the coarse parts of the motion vectors are predicted by the
prediction module which is present in both encoder and decoder. Since both the encoder and the
decoder are aware of the prediction, we can transmit the finer details in motion vectors alone at the

motion refinement module.

After predicting the coarse motion vectors which are exemplified in Figure 10, the reference frames
are bilinear warped towards the current frame. These predicted frames are later on passed to the

motion refinement and compression module that performs both compression and refinement.

Page 15 of 53

- s
b) ©)

Figure 10. a) The ground truth current image. b) The motion vectors in forward direction from the

past reference frame to current reference frame. ¢) The motion vectors in backward direction from
the future reference frame to current reference frame. (Red color depicts motion vectors in the -x

direction while blue color represents motion vectors in the +x direction.)

3.3. Motion Refinement

After predicting the coarse motion vectors with the motion prediction module, the finer details in
the motion vectors are transmitted together with the refining motion compression module present in
Figure 11. The middle layers of the autoencoder architecture has 128 filters to transform the frames
into a latent representation at the encoder and form the motion vectors and the fusion mask later at
the decoder. This module performs both the refinement and motion compression in a similar manner
to the Scale-Space Flow model proposed by Agustsson et al. [2]. The module has the same
architecture as the keyframe compression network proposed by Minnen et al. [7] except the context
model which is not present in our model. In addition, our model utilizes residual blocks in order to

reduce the problem of vanishing gradients and boost the optimization process.

— e —
= @ o

o < o >

5 © o © © © = © = o | | @

1 o N o N N £ N = @ =4 w0

8 = — — — = o — o ~ o o~

=2l > = =Pr=M = = (4] = P O S PO P>

= c £ £ = c o c D = o] =

o Q Q Q Q Q] aQ x =} x o

E o o o o (&) (@] o Q o (]

g o]

s = = =

e = @ (]

w

E) J L J) U)

=

o

(&

©

S

z

2

@

=

5 — — — — — — — — — — — — — ——

2 & N o & R o o

£ & & & 2| | & & R & =
O 2] e}

g (S I Tt I O Rl R I ol A S [=[|&] |=|[|&| || |’ - =

s ¥ ¥ | | sl 18] 12| 18] 2] 18] 12| [8] |2

o Sl |ol B ol || |2 & INEINE: S| |%([,]2 5 ° 5

s 2Paperieiepier s Q DMeapepiaper»or*o >

° m © m © m © =] o] m © [© o © ©

= © S © =] = € o = = = = = = S x

° =1 =l = o 3 =y Q S h= = o = o S = i

= =] D b=l B he] o O 2 % =] @ 3 @ = ® %
o L) 7] k) 7] () = (] 7] [B () » (] =]
3 o @ x D o - @ @ o @ o © o (73]
['a o o o o o
— — T —

Figure 11. Motion refinement and compression module architecture.

The module takes the predicted frames and the ground truth current frame as its inputs. Thus, the

Page 16 of 53

input layer must be provided with a tensor of 9 channels. After a latent representation is acquired and
passed to the decoder, the decoder yields three separate tensors. These tensors are the two motion
refinement tensors for the backward and forward warping as exemplified in Figure 12 and the fusion

mask in order to fuse the warped frames later on.

b))

Figure 12. a) The ground truth current image. b) The motion refinement vectors in forward direction
from the past reference frame to current reference frame. ¢) The motion refinement vectors in
backward direction from the future reference frame to current reference frame. (Red color depicts

motion vectors in the -x direction while blue color represents motion vectors in the +x direction.)

3.4. Gain and Inverse Gain Unit

In our motion refinement/motion compression and residual compression modules, one important
component is the gain/inverse gain unit proposed by Cui et al. [6]. Although Cui et al. [6] has
proposed using this component for image compression, our novel aim is to use the same component
for video compression by using in both motion compression network and the residual compression
network. This component allows us to train a single model to cover the complete rate-distortion curve
without performing any additional trainings. Furthermore, the gain and inverse gain units allow us to
form a continuous rate-distortion curve; thus, achieve arbitrary rate-distortion trade-offs without a

major performance loss.

The gain and inverse gain units are simple matrices composed of learned matrices that are used
to scale latent representations before the quantization step. The scaling operation is performed using
the learned scale parameters of the gain and inverse gain units. The gain and inverse gain units are
matrices of N x M dimensions where N stands for the compression levels that are desired, and M
stands for the number of channels in the latent representation. In that case, the gain and inverse gain

matrices can be thought of N scaling vectors that have M entries.

The scale parameters are paired for the gain and inverse gain units so that a scale vector, m,. in
the gain unit is only matching with the scale vector, m,. in the inverse gain unit. These scale vectors
are learned per channel and are learned separately for different compression levels. In our framework,
as the middle layer of both modules is composed of 128 filters, the latent representation has 128

Page 17 of 53

channels and the gain and inverse gain units have M = 128 learned scale parameters per level.

Using the gain and inverse gain units at the inference time, we are capable of achieving a
continuous rate-distortion curve by performing exponential interpolation to the quantization vectors
that are present in the gain and inverse gain matrices. As the pairing of the gain units and the inverse
gain vectors guarantee that the values of decoded frame and the ground truth frame remain in the
same range, we can choose an arbitrary constant, C, so that the multiplication of every gain and
inverse gain vector equals to C. Using this rule, the exponential interpolation operation can be

described with the following mathematical operation,

(m,, -771.;)1- (mt - m;) o =C
[(m.,,)'z-(mt)L_l} : [(m;)l- (fm;) 1_1] =C
My = {(m,.)l-(mt)l_l] ,m; = {(m:)i (m;)l_i]

where [is the interpolation factor between 0 and 1, m,. and m, are gain vectors of neighboring rate-
distortion tradeoff values and their matching inverse gain vectors are m,. and m, respectively. That

way, we can come up with interpolated gain and inverse gain vectors such as m,, and m,.

Figure 13. Demonstration of channel-wise constant vector, C which is a result of multiplication of

gain and inverse gain matrices.

In Figure 13, we can visualize the multiplication of gain and inverse gain vectors for 4 separate levels
with 128 channels. Following the results on the figure, we can conclude that the assumption that the

multiplication of gain and inverse gain units is equal to a constant arbitrary vector, C, is valid as the

Page 18 of 53

multiplication is almost same for all trade-off levels.

3.5. Learned Frame Fusion

After the motion refinement vectors and the fusion mask are collected from the motion refinement
module, the motion compensation step is performed to acquire a single compensated frame using the
framework depicted in Figure 14. To perform this operation, this module initially applies bilinear
warping to the two previously predicted frames using the motion refinement vectors. The bilinear
warping operation can be represented with the following mathematical representation,

Oy, P01 = Rees [1 + 070,515 + 07 [0,]1]

where w(X;_1,7;) is the warping operation, ©; is the estimated motion vectors and X;_; is the
previously decoded frame that is sampled with bilinear interpolation. As the previously predicted
frames only include the coarse motion information, the motion refinement vectors make finer touches
on the frames and improve the frame quality. Subsequently, the final warped frames are fused to each
other using the fusion mask that was the output of the motion refinement and compression module in
Section 3.3. Fusing the two warped frames, we reduce the warping artefacts that were present after
we performed warping two times. The fusion mask that is utilized in this step has the same
dimensionality as our frames and can only take values between 0 and 1 since we apply a sigmoid at
the final layer. That way, we force our model to take the best parts of both frames and fuse them at

uncertain parts of the frame. The fusion operation can be displayed with the following operation.
Xi=K xXpor+(1—K)xXp,

where K, stands for the fusion mask, X, stands for the fused frame, Xs_¢ stands for the backward

refined frame, and X,,_,, stands for the forward refined frame.

Figure 14. The diagram of frame fusion with the frame fusion mask after warping the predicted
frames.

Page 19 of 53

3.6. Residual Compression

Finally, the residual frame is acquired by subtracting the motion compensated frame from the
ground truth frame. That way, we achieve a low entropy residual frame that is capable of correcting

the motion compensated frame after it is compressed and decoded back as displayed in Figure 15.

The residual compression module has the same architecture as the motion refinement module that
was presented in Section 3.3. The network again has 128 filters in the middle layers. The difference
from the motion refinement module is that the residual compression network operates on an input
frame which has 3 channels instead of 9 channels of motion refinement module. Furthermore, the
output of the residual compression module is also a frame with 3 channels. The decoded residual
frame is simply added back to the motion compensated frame in order to minimize the distortion on
the output frame. That way, we acquire the desired output frame.

Residual
Compressor

Figure 15. The diagram for the residual compression module.

4. Experiments

4.1. Setup

Our compression network is optimized in an end-to-end manner since it only contains
differentiable components. To setup and optimize the model, PyTorch library [10] is used to provide
a deep learning framework. Furthermore, the pretrained keyframe compression network proposed by
Minnen et al. [7] is taken from the CompressAl library [11] with the name of “mbt2018 mean” and
quality levels of 5, 6, 7, and 8 corresponding to trade-off values of 1 = {845,1626,3141,6060}.

Further details about the environment and library versions can be found in Appendix 9.1.

4.2. Datasets

The bidirectional compression network with motion refinement is trained on the Vimeo-90K [12]
Page 20 of 53

dataset. The specific septuplet dataset has 91,701 videos with seven frames per video at a resolution
of 448 by 256. The dataset is also further augmented by taking different crops of 256 by 256 during

the training time.

To test our model, we encode and decode the video sequences from the UVG dataset [13].
Namely, we utilized our model on the Beauty, Bosphorus, Honeybee, ShakeNDry, Jockey,
ReadySetGo, and YatchRide sequences. For these video sequences, each video has 600 frames except
the shake sequence which has 300 frames. The videos have a spatial resolution of 1920 by 1080 and

a temporal resolution of 120 fps.

4.3. Loss Functions

Our aim for the model is to achieve the maximum frame quality with the minimum number of

bits. Thus, to train our model, a rate-distortion loss function is utilized as following.
L=AD + H(vmv) + H(vresidual)

where D stands for the distortion present in the decoded frames, v,,, stands for the latent
representation of the motion vectors of the bidirectional frames and v,.;4.4; Stands for the latent
representation of the residual components of the bidirectional frames. The H(.) operator is for the
entropy calculation of the latent representations and the result of the operator provides the bitrate for
a single frame. The entropy parameters (mean and standard deviation) are calculated by the hyperprior
network present in Motion Compression and Residual Compression modules. As the architecture of
these modules are similar to the network presented by Minnen et al. [7], the probability distribution
of individual pixels is approximated with Gaussian distribution. To achieve different bitrates and
frame qualities, different trade-off values (1) are used for each rate-distortion level. To optimize the
model parameters, we use two different distortion functions. First of all, we train our model using

mean squared error (MSE),

hxw

1
D@ x) = MSE(%,%) = —— Z (&, — x,)?
n=1

where X,, is the decoded pixel, x,, is the ground truth pixel and h x w is the dimensions of the frame.
Later on, the model is additionally finetuned for a second model using Multi-scale Structural
Similarity Method (MS-SSIM) score [14] in order to achieve a result that is more in line with the

human visual system. This score can be expressed with the following diagram in Figure 16,

Page 21 of 53

signal 1—{ L [f 24 >l L {24 |-+ 2}

' similarity
(X, y) halx. ¥) :L * measure
[

(=
|
|
|
|
|

signal 2—»{ L H 2 }»a{ L H 2;%--- 2}

Figure 16. The diagram to calculate the MS-SSIM loss. The number of levels for our training is

specified as 5.

where c(.), s(.), I; and the overall loss are expressed as following,

M
dCe,y) = e G 1 | (6o 0] [5;06]
Jj=1
_ 20x0y+(K3L)? _ OxytCy/2 _ 2pxepy+(KqL)?
C(xry) = O',%+O'32,+(K2L)2’ S(x,}’) - O'xO'y+C2/2’ ()) - ﬂ,zc+ﬂ32,+(K1L)2

In these equation for the calculation of the MS-SSIM score, x and y are the decoded and ground
truth frames while the o, B and y are pre-determined values by Wang et al. [14], determining the
relative importance of different scales and components. At the end of the training, the model is tested
in terms of the PSNR and MS-SSIM scores.

4.4. Training Details

For the training, we do not use any pretrained models and optimize the complete model in an end-
to-end manner. The training is performed on an NVIDIA Tesla V100 GPU for 2M iterations. The
training is performed with the Vimeo-90K dataset [12] which provided crops of 256 by 256. For data
augmentation, the crops are randomly selected from various parts of the 256 by 448 frames. At every
5K iterations, we perform validation on our model in order to control the performance on the non-
training data and save the model if it generalizes well. The validation is performed using the first
eight frames of the seven specified videos of the UVG dataset [13]. The network is optimized using
Adam optimizer and initial learning rate is set to 10~*. The learning rate is reduced by a half when

no improvement in validation is observed for 100K iterations.

As the model needs to perform quantization to encode the latent representations, we model this
effect with additive noise during training and perform hard quantization with rounding during test
time. The additive noise that models the effect of rounding has a standard deviation of 0.5 with a

mean of 0.

For our training, we used A = {436,1626,3141, 6060}.which corresponds to four gain and
Page 22 of 53

inverse gain vector pairs in both the motion refinement and the residual compression modules. Using
these trade-off values and the gain and inverse gain vector pairs, we train a single model for each
hierarchical level of each group of pictures and each quality level. Since the single model is trained
to perform well on different hierarchical and quality levels, our model can successfully generalize to
very different settings. During the training, we formed mini batches of 4 video sequences with 3
consequent frames. With each mini batch, we train all four levels that correspond to a trade-off value

A and its gain and inverse gain vectors.

5. Analysis and Results

To compare our bidirectional video compression with other networks proposed in the literature,
we provide both quantitative and qualitative comparisons in the following sections. During the tests
our model chooses a group of pictures size of 8 frames. That way we encode 7 frames as bidirectional
frames between every 2 intra-coded frames that were encoded using the model proposed by Minnen

et al. [7] without the context model.

5.1. Quantitative Results

We compare our network quantitatively with the networks proposed in the Related Works and
additionally traditional H.265 video codec [15]. As an anchor, the performance of the SVT-HEVC
codec of H.265 codec is displayed in bidirectional compression mode at very slow preset. Other than
H.265, we compare our network with famous learned video compression networks. These networks
are DVC [1], Scale-Space Flow [2], RLVC [3] and the model proposed by Yilmaz and Tekalp [4].

The performances of the given models are acquired from their repositories provided in GitHub.

To compare our results with the given works, we evaluate them in terms of PSNR and MS-SSIM
scores and plot their rate-distortion curves. The scores are plotted against bits per pixel (bpp) over the
resulting values from testing on UVG dataset [13]. The rate-distortion curves are acquired by linear

interpolation as can be seen in Figure 17 and Figure 18.

Observing Figures 17 and 18, it can be seen that our model displays a superior performance over
other codecs except at lower bitrates. Although our model performs better by a small margin at higher
bitrates, it falls behind of SVT-HEVC codec with very slow preset and the model proposed by Yilmaz
and Tekalp [4]. Other than that, our model achieves a substantial margin against other codecs. As our
model is a developed version of model by Yilmaz and Tekalp [4], our main comparison should be

based on their model.

Page 23 of 53

@ 55F (Agustsson et al. '20)
@ RLVC(Yang etal '20)
DVC {Lu et al. '19}
@ LHBDC (Yilmaz et al. '21)
39 @ H.265 (SVT-very slow)
® proposed
38
m 37
=
o
=
w
o
36
35
34

0.05 0.10 0.15 0.20 0.25 0.30
bpp (bits/pixel)

Figure 17. Rate-Distortion performance comparison with other models in terms of PSNR. The higher

and to the left, the better is the performance.

@ S5F (Agustsson et al. '20)
@ RLVC (Yang et al. '20)
DVC (Lu et al. "19)
& LHBDC [Yil t al '21)
0.985 @ H265 [S\J:Tr—r:fiiyes;wJ
@ proposed
0.980
0.975
= 0.970
n
u
v
=
0.965
0.960
0.955
0.950

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
bpp (bits/pixel)

Figure 18. Rate-Distortion performance comparison with other models in terms of MS-SSIM.
Page 24 of 53

These results are somewhat expected as bidirectional video compression is capable of achieving
superior results compared to unidirectional video compression methods such as DVC [1] and SSF [2]
due to the additional information coming from the backward motion information. However,
comparing with the LHBDC model proposed by Yilmaz and Tekalp [4], the margin is relatively small.
Although our model employs a more complex motion prediction module and performs motion
refinement, the reason behind this fact might be due to the gain and inverse gain units that were not
present in the model by Yilmaz and Tekalp [4]. As our framework is built with the training of a single
model that can perform well at different bitrates, the encoders and decoders are more constrained
compared to the LHBDC model [4].

Furthermore, a secondary reason for the lack of performance at lower bitrates might be the
warping artifacts that occur on the predicted frames. As we apply warping with the refined motions
on the predicted frames, the error from the predicted frames might be propagating and resulting in
worsened frame quality. As there are multiple reasons for the inferior performance at lower bitrates,
the reason for this difference will be investigated by training our model in separate instances without
the gain and inverse gain units and by training a second version of our model which applies the motion
refinement by adding the finer motion vector details onto the predicted motion vectors instead of

applying warping to the predicted frames.

On the other hand, it is important to note that our rate-distortion curves have significantly more
samples on the curve which is a result of adoption of gain and inverse gain units. This result implies
another strength of our model which allows us to achieve a more continuous rate-distortion curve

without training extensive numbers of models.

5.2. Qualitative Results

In addition to comparing our results in quantitative terms, a qualitative analysis is also performed
by comparing the visual quality of decoded frames using our proposed model, an unofficial
implementation of the SSF model [2] and the H.265/x.265 codec [15]. As the previous networks are
not made publicly available, the qualitative comparison can be rather limited.

For comparison, we can observe the decoded frames from the Bosphorus video sequence of the
UVG dataset in Figure 19, we can detect the higher quality of the proposed network both in terms of
the quantitative measures such as the PSNR, PSNR in YCrCb channels and MS-SSIM scores. In all
quantitative measures our proposed model achieves the best results while SSF model [2] comes
second. Furthermore, comparing the details on the waves and the flag on Figure 19, we can detect the

high frequency details more clearly with the proposed model while the results with the SSF and H.265

Page 25 of 53

lack such details.

Ground Truth Proposed Model Scale-space Flow (SSF) [2] H.265/HEVC (slow)
PSNR: 37.718 dB PSNR: 37.176 dB PSNR: 32.896 dB
PSNRg,;: 41.522 dB PSNRg,;: 39.900 dB PSNRy,;: 35.818 dB
MS-SSIM: 0.9771 MS-SSIM: 0.9741 MS-SSIM: 0.9340
Size: 47.512 kbits/frame Size: 47.717 kbits/frame Size: 53.99 kbits/frame

Ground Truth Proposed Model Scale-space Flow (SSF) [2]
PSNR: 34.751 dB PSNR: 34.665 dB
PSNR,,,: 37.751 dB PSNR,,,: 37.699 dB
MS-SSIM: 0.9602 MS-SSIM: 0.9583
Size: 173.10 kbits/frame Size: 173.41 kbits/frame

Figure 19. Qualitative comparison of the proposed model with the Scale-Space Flow model [2] and
X265 codec [15] with slow preset.

6. Conclusion

Our flexible-rate bidirectional video compression network yields a competitive rate-distortion
performance compared to other works in the literature of learned video compression. Although the
model achieves slightly worse frame qualities at lower bitrates, it still remains competitive while
achieving a better rate-distortion performance at higher bitrates when compared using the UVG
dataset [13]. In addition, our model allows us to train a single model to achieve all rate-distortion
trade-off values on the rate-distortion curve whereas other models are doomed to train several
separate networks in order to build a rate-distortion curve and achieve bitrates at different ranges. As
our aim was to build a bidirectional model that performs better in terms of rate-distortion performance

at all bitrates, our design has partially met its goal.

For the future work, we aim to investigate the reasoning behind the inferior performance at the
Page 26 of 53

lower bitrates and perhaps yield an improvement also in the higher bitrates. As the reason for the
inferior results might be the warping artifacts that yield from the frame prediction step and secondary
application of warping on the predicted frames, we aim to propose a new model which sums the
predicted motion vectors and the motion refinements to apply motion compensation only once instead

of twice. We believe that the warping artifacts can be reduced by making such a change.

Furthermore, an ablation study will be performed on the effect of our adoption of gain and inverse
gain units. Although Cui et al. [6] claim that the units have no adversarial effect on the model
performance in image compression, our integration into video compression might be different. For
that reason, we plan to train our model in separate instances at all 4 levels which have been trained in

single training.

Page 27 of 53

7. References

[1] G.Lu, W. Quyang, D. Xu, X. Zhang, C. Cai and Z. Gao, "DVC: An End-to-end Deep Video
Compression Framework," in Computer Vision and Pattern Recognition (CVPR) 2019, Long
Beach, California, 2019.

[2] E. Agustsson, D. Minnen, N. Johnston, J. Balle, S. J. Hwang and G. Toderici, "Scale-space
flow for end-to-end optimized video compression,” in Computer Vision and Pattern
Recognition (CVPR), Virtual, 2020.

[3] R.Yang, F. Mentzer, L. Van Gool and R. Timofte, "Learning for Video Compression With
Recurrent Auto-Encoder and Recurrent Probability Model,” IEEE Journal of Selected Topics
in Signal Processing, vol. 15, no. 2, pp. 338-401, 2021.

[4] M. A. Yilmaz and A. M. Tekalp, "End-to-End Rate-Distortion Optimized Learned
Hierarchical Bi-Directional Video Compression,” IEEE Transactions on Image Processing,
vol. 31, pp. 974-983, 2021.

[5] Cisco, "Cisco Annual Internet Report (2018-2023) White Paper,” 9 March 2020. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-
internet-report/white-paper-c11-741490.html. [Accessed 10 October 2021].

[6] Z.Cui, J. Wang, S. Gao, T. Guo, Y. Feng and B. Bai, "Asymmetric Gained Deep Image
Compression With Continuous Rate Adaptation,” in Conference on Computer Vision and
Pattern Recognition (CVPR), Virtual, 2021.

[7] D. Minnen, J. Balle and G. Toderici, "Joint autoregressive and hierarchical priors for learned
image compression,” in NeurlPS, Montreal, 2018.

[8] Z. Cheng, H. Sun, Takeuchi and J. Katto, "Learned Image Compression with Discretized
Gaussian Mixture Likelihoods and Attention Modules," in IEEE Computer Vision and Pattern
Recognition (CVPR), Seattle, 2020.

[9] A. Ranjan and M. Black, "Optical Flow Estimation using a Spatial Pyramid Network," in
CVPR 2017, 2017.

[10] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. L. Z. DeVito, A. Desmaison, L.

Antiga and A. Lerer, "Automatic differentiation in PyTorch," in NeurlPS 2017, California,
2017.

[11] J. Begaint, F. Racape, S. Feltman and A. Pushparaja, "CompressAl: a PyTorch library and
evaluation platform for end-to-end compression research,” arXiv preprint arXiv:2011.03029,
2020.

[12] T. Xue, B. Chen, J. Wu, D. Wei and W. Freeman, "Video Enhancement with Task-Oriented
Flow," International Journal of Computer Vision, vol. 127, no. 8, pp. 1106-1125, 2019.

[13] A. Mercat, M. Viitanen and J. Vanne, "UVG dataset: 50/120fps 4K sequences for video codec
analysis and development,” in ACM Multimedia Syst. Conf., Istanbul, 2020.

[14] Z. Wang, E. Simoncelli and A. Bovik, "Multi-Scale Structural Similarity for Image Quality
Assessment,"” in IEEE Asilomar Conference on Signals, Systems and Computers, 2003.

[15] G. J. Sullivan, J.-R. Ohm, W.-J. Han and T. Wiegand, "Overview of the High Efficiency

Video Coding (HEVC) Standard,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 22, pp. 1649-1668, 2012.

[16] L. Haopeng, Y. Yuan and W. Qi, "Video Frame Interpolation Via Residue Refinement," in
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, 2020.

Page 28 of 53

8. Appendices

8.1. Environment (.yml file)

pytorch

anaconda

conda-forge
defaults

_libgcc mutex=0.l=main
anyio=2.0.2=py38h578d%bd 4
argon2-cffi=20.1.0=py38h25fe258 2
async _generator=1.10=py 0
attrs=20.3.0=pyhd3deb0d 0
babel=2.9.0=pyhd3deb0d 0
backcall=0.2.0=pyh9f0adld O
backports=1.0=py 2
backports.functools lru cache=1.6.1=py 0
blas=1.0=mkl
bleach=3.2.2=pyh44b312d 0
brotlipy=0.7.0=py38h8df0ef7 1001
ca-certificates=2020.12.5=ha878542 0
certifi=2020.12.5=py38h578d9%0d 1
cffi=1.14.4=py38h26lae71 0
chardet=4.0.0=py38h578d%bd 1
cryptography=3.3.1=py38h3c74£83 0
cudatoolkit=11.0.221=h6bb024c 0
decorator=4.4.2=py 0
defusedxml=0.6.0=py O
entrypoints=0.3=pyhd8edlab 1003
freetype=2.10.4=h5ab3b9%f 0
idna=2.10=pyh9f0adld 0
imageio=2.9.0=py 0
importlib-metadata=3.4.0=py38h578d9%bd 0
importlib metadata=3.4.0=hd8edlab 0
intel-openmp=2020.2=254
ipykernel=5.4.3=py38h81c977d 0
ipython=7.12.0=py38h5cald4c 0
ipython genutils=0.2.0=py 1
jedi=0.18.0=py38h578d9%bd 2
jinja2=2.11.2=pyh9f0adld 0
Jpeg=9b=h024ee3a 2
json5=0.9.5=pyh9f0adld 0
Jsonschema=3.2.0=py 2

jupyter client=6.1.11l=pyhd8edlab 1
jupyter core=4.7.0=py38h578d9%0d 1
Jupyter server=1.2.2=py38h578d9%bd 1
jupyterlab=3.0.5=pyhd8edlab 0
jupyterlab pygments=0.1.2=pyh9f0adld 0

Page 29 of 53

Jupyterlab server=2.1.2=pyhd8edlab 0
lcms2=2.11=h396b838 0

1d impl linux-64=2.33.1=h53a64le 7
libedit=3.1.20191231=h14c3975 1
libffi=3.3=he6710b0_ 2
libgcc-ng=9.1.0=hdf63c60 0
libgfortran-ng=7.3.0=hdf63c60 0
libpng=1.6.37=hbc83047 0
libsodium=1.0.18=h36c2eal 1
libstdcxx-ng=9.1.0=hdf63c60 0
libtiff=4.1.0=h2733197 1
libuv=1.40.0=h7b6447c 0
1z4-c=1.9.3=h2531618 0
markupsafe=1.1.1=py38h8dfl0ef7 2
mistune=0.8.4=py38h25fe258 1002
mkl1=2020.2=256
mkl-service=2.3.0=py38he904b0f 0
mkl fft=1.2.0=py38h23d657b 0

mkl random=1.1.l=py38h0573a6f 0
natsort=7.0.1=py O
nbclassic=0.2.6=pyhd8edlab 0
nbclient=0.5.1=py O
nbconvert=6.0.7=py38h578d9bd 3
nbformat=5.1.2=pyhd8edlab 1
ncurses=6.2=he6710b0 1
nest-asyncio=1.4.3=pyhd8edlab 0
ninja=1.10.2=py38hff7bd54 0
notebook=6.2.0=py38h578d9%bd 0
numpy=1.19.2=py38h54aff64 0
numpy-base=1.19.2=py38hfa32c7d 0
olefile=0.46=py 0
openssl=1.1.1i=h27cfd23 0
packaging=20.8=pyhd3deb0d 0
pandoc=2.11.3.2=h7£98852 0
pandocfilters=1.4.2=py 1
parso=0.8.1l=pyhd8edlab 0
pexpect=4.8.0=pyh9f0adld 2
pickleshare=0.7.5=py 1003
pillow=8.1.0=py38he98fc37 0
pip=20.3.3=py38h06a4308 0
prometheus client=0.9.0=pyhd3deb0d 0
prompt-toolkit=3.0.11=pyha770c72 0
prompt toolkit=3.0.11=hd8edlab 0
ptyprocess=0.7.0=pyhd3deb0d 0
pycparser=2.20=pyh9f0adld 2
pygments=2.7.4=pyhd8edlab 0
pyopenssl1=20.0.1=pyhd8edlab 0
pyparsing=2.4.7=pyh9f0adld 0
pyrsistent=0.17.3=py38h25fe258 1
pysocks=1.7.1=py38h578d9%bd 3

Page 30 of 53

python=3.8.5=h7579374 1
python-dateutil=2.8.1=py 0
python abi=3.8=1 cp38
pytorch=1.7.1=py3.8 cudall.0.221 cudnn8.0.5 0
pytz=2020.5=pyhd8edlab 0
pyzmg=20.0.0=py38hldlbl2f 1
readline=8.0=h7b6447c 0
requests=2.25.1=pyhd3deb0d 0
scipy=1.5.2=py38h0b6359f 0
send2trash=1.5.0=py 0
setuptools=51.3.3=py38h06a4308 4
six=1.15.0=py38h06a4308 0
sniffio=1.2.0=py38h578d%d 1
sgqlite=3.33.0=h62c20be 0
terminado=0.9.2=py38h578d9%bd 0
testpath=0.4.4=py 0
tk=8.6.10=hbc83047 0
torchaudio=0.7.2=py38
torchvision=0.8.2=py38 cullO
tornado=6.1l=py38h25fe258 0
traitlets=5.0.5=py 0

typing extensions=3.7.4.3=py 0
urllib3=1.26.2=pyhd8edlab 0
wcwidth=0.2.5=pyh9f0adld 2
webencodings=0.5.1=py 1
wheel=0.36.2=pyhd3eblb0 0
xz=5.2.5=h7b6447c 0
zeromg=4.3.3=h58526e2 3
zipp=3.4.0=py O
zlib=1.2.11=h7b6447c 3
zstd=1.4.5=h9%ceee32 0

cupy-cudall0==8.5.0
cycler==0.10.0
fastrlock==0.5

kiwisolver==1.3.1

pytorch-msssim==0.2.0

/scratch/users/ecetinl7/.conda/envs/icip2022

8.2. U-Net Code [16]

torch
torch nn
torch.nn.functional

UNet (nn.Module) :
__init (self, in channels= out channels= depth=
padding=) :
super (UNet, self). init ()

Page 31 of 53

self.padding padding
self.depth = depth
prev_channels = in channels
self.down path = nn.ModuleList ()
i range (depth) :
self.down path.append (
UNetConvBlock (prev channels **% (wf + 1) padding)
)
prev_channels = ** (wf + 1)
self.midconv
padding=1)

nn.Conv2d (prev channels, prev channels, kernel size=

self.up path nn.ModulelList ()
i reversed (range (depth - 1)) :
self.up path.append (
UNetUpBlock (prev channels **% (wf + 1) padding)
)

prev_channels = ** (wf + 1)

self.last = nn.Conv2d(prev_channels, out channels
kernel size=3,padding=1)

forward (self, x):
blocks = []
i, down enumerate (self.down path) :
x = down (x)
i != len(self.down path) -
blocks.append (x)
x = F.avg pool2d(x)
x = F.leaky relu(self.midconv(x), negative slope =
up enumerate (self.up path) :

i
x = up(x, blocks[-1 - 1])

self.last (x)

UNetConvBlock (nn.Module) :
__init (self, in size, out size, padding) :
super (UNetConvBlock, self). init ()
block = []

block.append(nn.Conv2d(in size, out size, kernel size=
padding=int (padding)))
block.append (nn.LeakyReLU ())

block.append (nn.Conv2d(out size, out size, kernel size=
padding=int (padding)))

block.append (nn.LeakyReLU ())

self.block = nn.Sequential (*block)

forward (self, x):
out = self.block (x)
out

UNetUpBlock (nn.Module) :
_init (self, in size, out size, padding):

super (UNetUpBlock, self). init ()

self.up = nn.Sequential (
nn.Upsample (mode= scale factor=2)
nn.Conv2d(in size, out size, kernel size= padding=1)
)

self.conv block = UNetConvBlock(in size, out size, padding)

Page 32 of 53

center crop(self, layer, target size):
_, _, layer height, layer width = layer.size()
diff y = (layer height - target size[0]) //
diff x = (layer width - target size[l]) //
layer|[
diff y : (diff y + target size[0]), diff x : (diff x +
target size[l])
]
forward(self, x, bridge):
up = self.up(x)
cropl = self.center crop(bridge, up.shape[2:])
out = torch.cat((up, cropl))
out = self.conv _block (out)
out

8.3. Layers Code

torch
torch.nn nn
torch.nn.functional F

compressai.models MeanScaleHyperprior
compressai.models.utils conv, deconv
compressai.layers (

GDN

AttentionBlock

ResidualBlock

ResidualBlockUpsample

ResidualBlockWithStride

conv3x3

subpel conv3x3

conv (in_channels, out channels, kernel size= stride=2):
nn.Conv2d (
in channels
out channels
kernel size=kernel size
stride=stride
padding=kernel size //

deconv (in channels, out channels, kernel size= stride=2) :

nn.ConvTranspose2d (

in channels

out channels

kernel size=kernel size

stride=stride

output padding=stride -

padding=kernel size //

Gain Module (nn.Module) :
__init (self, n= N=

super (Gain Module, self). init ()

self.gain matrix = nn.Parameter (torch.ones(n, N))

Page 33 of 53

self.bias = bias
bias:
self.bias = nn.Parameter (torch.ones (N))

forward(self, x, n= 1=1) :
B, C, H, W = x.shape

gainl = self.gain matrix[n]
gain2 = self.gain matrix[[n[0]+1]]
gain = (torch.abs(gainl)**1)* (torch.abs(gain2)**(1-1))

gain torch.abs (self.gain matrix[n])

reshaped gain = gain.unsqueeze (2) .unsqueeze (3)
rescaled latent = reshaped gain * x

self.bias:
rescaled latent += self.bias[n]

rescaled latent
FlowCompressor (MeanScaleHyperprior) :

__init (self, n= in ch= out ch= N= **kwargs) :
super () . init (N=N, M=N, **kwargs)

self.g a = nn.Sequential (
ResidualBlockWithStride (in ch, N, stride=2)
ResidualBlock (N, N)
ResidualBlockWithStride (N, N, stride=2)
ResidualBlock (N, N)
ResidualBlockWithStride (N, N, stride=2)
ResidualBlock (N, N)
conv3x3 (N, N, stride=2)

self.h a = nn.Sequential (
conv3x3 (N, N)
nn.LeakyRelLU (inplace=
conv3x3 (N, N)
nn.LeakyReLU (inplace=
conv3x3 (N, N, stride=2)
nn.LeakyRelLU (inplace=
conv3x3 (N, N)
nn.LeakyReLU (inplace=
conv3x3 (N, N, stride=2)

self.h s = nn.Sequential (
conv3x3 (N, N)
nn.LeakyReLU (inplace=
subpel conv3x3 (N, N
nn.LeakyReLU (inplace=
conv3x3 (N, N * /] 2)
nn.LeakyReLU (inplace=
subpel conv3x3 (N * //
nn.LeakyReLU (inplace=
conv3x3 (N * // N *

Page 34 of 53

self.g s = nn.Sequential (
ResidualBlock (N, N)
ResidualBlockUpsample (N, N
ResidualBlock (N, N)
ResidualBlockUpsample (N, N
ResidualBlock (N, N)
ResidualBlockUpsample (N, N
ResidualBlock (N, N)
subpel conv3x3 (N, out ch

)

self.] .weight.data.fill (

self.] .bias.data.fill ()

self.gain unit = Gain Module (n=n, N=N, bias=bias, inv=
self.inv _gain unit = Gain Module (n=n, N=N, bias=bias, inv=

self.hyper gain unit = Gain Module (n=n, N=N, bias=bias, inv=
self.hyper inv gain unit = Gain Module (n=n, N=N, bias=bias, inv=

forward(self, x, n= train=
self.training = train

y = self.g a(x)

scaled y = self.gain unit(y, n, 1)

z = self.h a(scaled y)

scaled z = self.hyper gain unit(z, n, 1)

z hat, z likelihoods = self.entropy bottleneck(scaled z)

scaled z hat = self.hyper inv gain unit(z hat, n, 1)

gaussian params = self.h s(scaled z hat)

scales hat, means hat = gaussian params.chunk ()

y hat, y likelihoods = self.gaussian conditional (scaled y, scales hat
means=means_hat)

scaled y hat = self.inv gain unit(y hat, n, 1)

x _hat = self.g s(scaled y hat)

{
X hat
{ : y likelihoods : z likelihoods}

ResidualCompressor (MeanScaleHyperprior) :

__init (self, n= in ch= N= bias= **kwargs) :
super () . init (N=N, M=N, **kwargs)

self.g a = nn.Sequential (
ResidualBlockWithStride (in ch, N, stride=2)
ResidualBlock (N, N)
ResidualBlockWithStride (N, N, stride=2)
ResidualBlock (N, N)
ResidualBlockWithStride (N, N, stride=2)
ResidualBlock (N, N)
conv3x3 (N, N, stride=2)

self.h a = nn.Sequential (
conv3x3 (N, N)
nn.LeakyReLU (inplace=
conv3x3 (N, N)
nn.LeakyReLU (inplace=
conv3x3 (N, N, stride=
nn.LeakyReLU (inplace=

Page 35 of 53

conv3x3 (N, N)
nn.LeakyReLU (inplace=
conv3x3 (N, N, stride=2)

self.h s = nn.Sequential (
conv3x3 (N, N)
nn.LeakyReLU (inplace=
subpel conv3x3 (N, N
nn.LeakyReLU (inplace=
conv3x3 (N, N * /] 2)
nn.LeakyReLU (inplace=
subpel conv3x3 (N * //
nn.LeakyReLU (inplace=
conv3x3 (N * // N *

self.g s = nn.Sequential (
ResidualBlock (N, N)
ResidualBlockUpsample (N
ResidualBlock (N, N)
ResidualBlockUpsample (N
ResidualBlock (N, N)
ResidualBlockUpsample (N
ResidualBlock (N, N)
subpel conv3x3 (N, in ch

self.gain unit = Gain Module (n=n, N=N, bias=bias, inv=
self.inv _gain unit = Gain Module (n=n, N=N, bias=bias, inv=

self.hyper gain unit = Gain Module (n=n, N=N, bias=bias, inv=
self.hyper inv gain unit = Gain Module (n=n, N=N, bias=bias, inv=

forward(self, x, n= train=
self.training = train

y = self.g a(x)

scaled y = self.gain unit(y, n, 1)

z = self.h a(scaled y)

scaled z = self.hyper gain unit(z, n, 1)

z hat, z likelihoods = self.entropy bottleneck(scaled z)

scaled z hat = self.hyper inv gain unit(z hat, n, 1)

gaussian params = self.h s(scaled z hat)

scales _hat, means hat = gaussian params.chunk ()

y hat, y likelihoods = self.gaussian conditional (scaled y, scales hat
means=means_hat)

scaled y hat = self.inv gain unit(y hat, n, 1)

x hat = self.g s(scaled y hat)

{
X hat
{ : y likelihoods : z likelihoods}

8.4. Model Code

torch
torch.nn nn
torch.nn.functional F
torchvision.ops.deform conv
time
math

Page 36 of 53

compressai.models MeanScaleHyperprior
compressail.models.utils conv, deconv
compressai.layers GDN

.layers FlowCompressor, ResidualCompressor
.unet UNet

device = torch.device (

BidirFlowRef (nn.Module) :

7init (self, n= INES) g

super (BidirFlowRef, self). init ()

self.flow predictor = UNet (in channels= out channels= depth=
padding=)

self.flow compressor = FlowCompressor (n=n, in ch= out ch= N=
)

self.residual compressor = ResidualCompressor (n=n, in ch= N=N
)

forward(self, x before, x current, x after, n=
_+ _, H, W = x current.shape
num pixels = H * W

enc_start = time.perf counter()

pred input = torch.cat((x before, x after), dim=1)
mv_pred = self.flow predictor (pred input)

mv_before, mv after = torch.chunk (mv pred dim=1)

x before pred = self.backwarp (x before, mv _before)
x after pred = self.backwarp(x after, mv_after)

X _input = torch.cat ((x current, x before pred, x after pred)

flow result = self.flow compressor(x input, n, 1, train)
flow hat = flow result|]

dec start = time.perf counter ()
mv_before refined = flow hat[:
mv_after refined = flow hat[:

beta = F.sigmoid(flow hat[: 3 25 21)

x comp = beta * self.backwarp(x before pred, mv before refined)
beta) * self.backwarp(x after pred, mv_after refined)

dec mid = time.perf counter ()
dec time dec mid - dec start

residual X _current - x comp
residual result = self.residual compressor (residual, n, 1

enc end = time.perf counter ()

Page 37 of 53

enc_time = enc end - enc_start
residual hat = residual result]
dec mid start = time.perf counter ()
x _hat = x comp + residual hat

dec mid end = time.perf counter ()
dec_time += (dec mid end - dec mid start)

size flow = sum(
(torch.log(likelihoods) .sum (dim= ()) / (-math.log(2)))
likelihoods flow result]] .values ()
)

rate flow = size flow / num pixels

size residual = sum/(
torch.log(likelihoods) .sum (dim= ()) / (-math.log(2))
likelihoods residual result]| 1 .values ()

)

rate residual = size residual / num pixels

{
x_ hat
x before pred
x after pred
mv_before
mv_after
mv_before refined
mv_after refined

self.backwarp (x before pred, mv before refined)
self.backwarp (x after pred, mv_after refined)
X _comp
residual hat
size flow + size residual
rate flow + rate residual
enc_time
dec time

backwarp (self, tenInput, tenFlow) :

tenHor = torch.linspace (- + (/ tenFlow.shape[3])
tenFlow.shape[3])
tenFlow.shape[3]) .view (
tenFlow.shape([2], -1)
tenVer = torch.linspace (- + (/ tenFlow.shape[2])
tenFlow.shape[2])
tenFlow.shape[2]) .view () .expand (-
tenFlow.shape[3])

backwarp tenGrid = torch.cat ([tenHor, tenVer]) .to (device)

tenFlow = torch.cat ([tenFlow]|: : : :] / ((tenInput.shape]l

tenFlow][: : : :] / ((tenInput.shape[2] -

torch.nn.functional.grid sample (input=tenInput
grid=(backwarp tenGrid +

Page 38 of 53

tenFlow) .permute (

padding mode= align corners=

8.5. Utility Code

torch
torch optim
numpy np
natsort natsorted
glob
random
Sys
imageio
math
torch.nn

logging

normalize (tensor) :
norm = (tensor) /
norm

float to uint8 (image) :

clip = torch.clamp (image)

im uint8 = torch.round(clip) .type (torch.uint8)
im uint8

MSE (gt, pred):

mse = torch.mean((gt - pred) **)
mse

PSNR (mse, data range) :

psnr = * torch.loglO ((data range ** 2) / mse)
psnr

calculate distortion loss(out, real, dim):

distortion loss = torch.mean ((out - real) **
distortion loss

pl
P2

pad = nn.ReflectionPad2d (padding=(P2
pad (im) .squeeze (0)

torch.utils.data Dataset

tensor crop(frames, patch size, rng):

X train =
sample im imageio.imread (frames[0])

X = rng.randint (sample im.shape[l] - patch size)

Page 39 of 53

rng.randint (sample im.shape[0] - patch size)
k range (len (frames)) :

img = imageio.imread (frames/[k])
img cropped = img[y:y + patch size, x:x + patch size]
img cropped img cropped.transpose ()

img concat np.array (img_ cropped)
img concat np.concatenate ((img concat, img cropped)
img concat

VimeoTrainDataset (Dataset) :

__init (self, data path, patch size, gop size, skip frames, num frames
rng, dtype=) :

self.data path = data path

videos [1]

folders = natsorted(glob.glob(data path +))
folder folders:
videos += natsorted(glob.glob (folder +))

.videos = videos

.patch size = patch size
.gop_size = gop size

.skip frames = skip frames
.dtype = dtype

num_ frames:
self.num frames num_ frames

self.num frames (self.gop size // self.skip frames) +

self.dataset size = len(self.videos)

len (self):
self.dataset size

__getitem (self, item):
video = self.videos[item]
video im list = natsorted(glob.glob(video + + self.dtype))

Page 40 of 53

length = len(video_ im list)

s = self.rng.randint (length - - (self.num frames -)
self.skip frames)

video split = video im list[s:s + self.skip frames *
self.num frames:self.skip frames]

video split = tensor crop(video split, self.patch size, self.rng)
videoisplit normalize(videoisplit)

video split

UVGTestDataset (Dataset) :

__init (self, data path, video names, gop size, skip frames
test size=2):

.data path = data path
.skip frames = skip frames
.gop_size = gop size

- CE@BE_Jilze = Test Size
.frames = []

video name video names:

video = data path + video name

frames = natsorted(glob.glob (video +
)) [:test size*gop size+l]

idx, frame enumerate (frames) :
self.frames.append (frame)
(idx % gop size == 0) (idx != 0) (idx // gop size !=
test size):
self.frames.append (frame)

self.dataset size = len(self.frames)
self.orig img size = imageio.imread(self.frames[0]) .shape

__len (self) :

self.dataset size

__getitem (self, item):

frame sgif.frames[itemJ

= imageio.imread (frame) .transpose ()
= normalize (torch.from numpy (im)) .unsqueeze (0)
= pad(im)

im

KodakTestDataset (Dataset) :

__init (self, data path):

Page 41 of 53

self.data path = data path
self.images = natsorted(glob.glob(self.data path +

len (self) :

len(self.images)

__getitem (self, item):
im = self.images[item]

= imageio.imread (im) .transpose (
= normalize (torch.from numpy (im))

im

image compress (im, COmpressor) :
out = compressor (im)
dec = out]]
size image = sum/(
(torch.log(likelihoods) .sum() / (-math.log(2)))
likelihoods out [1 .values ()

dec, size image

save model (model, optimizer, aux optimizer, scheduler, num iter
save name=) ¢

save dict = {}
optimizer:
save dict]| optimizer.state dict ()
aux optimizer:
save dict]|] = aux optimizer.state dict ()

scheduler:
save dict]| scheduler.state dict()

num iter:
save dict][] = num_iter

child, module model.named children () :
child exceptions:

save dict[child] = module.state dict ()
logging.info (+ child + + save name)

torch.save (save dict, save name)

load model (model, pretrained dict, exceptions):

Page 42 of 53

exceptions

model child names = [name name model .named children ()]

name, submodule pretrained dict.items () :

exceptions:

name model child names:

message = getattr (model, name) .load state dict (submodule)
logging.info (name + + str (message))
model

configure seeds (random seed= torch seed=
random_seed :
random seed = random.randrange (sys.maxsize)
torch seed :
torch seed = torch.seed()

torch.manual seed(torch seed)

rng = random.Random (random seed)
logging.info(+ str(random seed))
logging.info (+ str(torch seed))

rng

configure optimizers (model, args):

parameters = []
aux parameters = []
parameter dict = {}
name, param model.named parameters () :
parameter dict[name] = param
name.endswith () ¢
parameters.append((name, param))

aux parameters.append((name, param))

aux param set = set(p n, p aux parameters)
num aux params = sum([np.prod(p.size()) P aux param set])

logging.info (+ str(num aux params) +

parameters name set = set (n n,p parameters)

aux parameters name set = set(n n, p aux parameters)
len (parameters) == len (parameters name set)
len (aux parameters) == len(aux parameters name set)

inter params = parameters name set & aux parameters name set
union params = parameters name set | aux parameters name set
len (inter params) ==
len (union params) - len(parameter dict.keys()) ==

optimizer = optim.Adam((p (n, p) parameters p.requires grad)
lr=args.learning rate)
aux optimizer = optim.Adam((p (n, p) aux parameters

Page 43 of 53

p.requires grad)
lr=args.aux learning rate)

scheduler = optim.lr scheduler.ReducelLROnPlateau (optimizer, mode=
factor=
patience=args.patience
min lr=args.min 1r)

optimizer, aux optimizer, scheduler

load optimizer (pretrained dict, device, optimizer, aux optimizer=

message = optimizer.load state dict (pretrained dict|[
logging.info(+ str (message))

aux optimizer:
aux optimizer.load state dict (pretrained dict]|

logging.info(+ str (message))

optimizer, aux optimizer

Infographic() :

__init (self):
self.step train dist loss
self.step train rate loss
self.step train loss =
self.avg psnr dec =
self.avg bpp =
self.avg val loss =

self.best val loss = *x
self.psnr dec at best loss = -
self.bpp at best loss = -

update train info(self, distortion loss, rate loss, loss):
self.step train dist loss += distortion loss
self.step train rate loss += rate loss

self.step train loss += loss

zero train info(self):
self.step train dist loss
self.step train rate loss
self.step train loss =

update val info(self, avg val loss, avg psnr, avg bpp) :
self.avg val loss = avg val loss

self.avg psnr dec = avg psnr

self.avg bpp = avg bpp

update best val info(self):
self.best val loss = self.avg val loss

Page 44 of 53

self.psnr dec at best loss = self.avg psnr dec
self.bpp at best loss = self.avg bpp

8.6. Training Code
torch
numpy np
oS
Sys
warnings

warnings.filterwarnings (
imageio

compressai.zoo mbt2018 mean

wandb
wandb exist =
ImportError:
wandb exist =

argparse
logging

time

torch.utils.data Dataloader, RandomSampler

model path = os.path.abspath (
sys.path.insert (model path)

model b model
utils float to uint8, MSE, PSNR, calculate distortion loss
utils VimeoTrainDataset, UVGTestDataset

utils image compress, save model, load optimizer
utils configure seeds, configure optimizers
utils load model, Infographic

parser = argparse.ArgumentParser ()

parser.add argument (

parser.add argument (
default=
parser.add argument (

parser.add argument (
parser.add argument (
default=
parser.add argument (
default=
parser.add argument (

parser.add argument (
parser.add argument (
parser.add argument (

parser.add argument (

parser.add argument (

type=str, default=

type=str
)
type=int, default=

type=int, default=
type=str

type=str
)
type=int, default=
type=int, default=
type=float, default=
type=float, default=
type=float, default=)

type=int, default=

Page 45 of 53

.add_argument (type=int, default=4)
.add argument (type=int, default=

.add_argument (type=int, default=
.add argument (type=int, default
.add argument (type=int, defaul
.add argument (type=int, default=8)
.add argument (type=int, default=1)

.add_argument (type=int, default=

parser.add argument (type=int, default=

parser.add argument (type=str, default=

.add argument (type=str, default=

.add _argument (type=int, default=4)

.add _argument (type=str, default=

.add argument (action= de
.add _argument (action= default
.add argument (action=

args = parser.parse args ()

args.save name = args.model name

logging.basicConfig(filename= args.save name + leve

rng = configure seeds (args.random seed, args.torch seed)
device = torch.device (args.device)

args.betas mse = torch.tensor ([*(
‘k(7**)
) 1) .to(device)
args.num i = (

args.levels = args.betas mse.shape[0]

coding order = [

decoding info = {

] 20 1}

Page 46 of 53

)

=3)

t=2)

)

fault=

default=

1=logging.INFO)

train one step(im batch
device) :

model, im models

optimizer

= im batch[:
= im batch[:
im batch[:

dist loss
rate loss

dec0, dec2 = {}, {}
streams = {}

i range (args.levels) :

streams[i] = torch.cuda.Stream(device=device)
level b torch.arange (args.levels) .to (device)
level i = torch.clamp (

level b + torch.clamp (

torch.abs (torch.round(torch.randn (args.levels)

) min= max=args.levels-—

) .long ()

torch.no grad() :
torch.cuda.synchronize ()

torch.cuda.stream(streams |
decO[0] = im models[level 1]
dec2[0] = im models[level 1]

torch.cuda.stream(streams |
decO[1] = im models[level i]
dec2[1] = im models[level 1]

torch.cuda.stream(streams |
decO0[2] = im models[level i]
dec2[2] im models[level i

torch.cuda.stream(streams |
decO0[3] = im models[level i]
dec2[3] im models[level i[3]]

torch.cuda.synchronize (device=device)

decO
dec?2

= torch.cat (tuple(decO.values())
torch.cat (tuple (dec2.values ())

output = model (
x _before=dec0
X current=x1
x after=dec2
n=level b

Page 47 of 53

aux optimizer

.to(device)))

.unsqueeze (
.unsqueeze (

.unsqueeze (
.unsqueeze (

.unsqueeze (
.unsqueeze (

.unsqueeze (
.unsqueeze (

betas

max=

dist loss betas * calculate distortion loss (output [
))

rate loss = output|]

loss = dist loss + rate loss

loss = torch.exp(torch.mean (torch.log(loss)))
dist loss = torch.exp(torch.mean (torch.log(dist loss)))
rate loss = torch.exp(torch.mean (torch.log(rate loss)))

aux_ loss = (model.flow compressor.aux loss() +
model.residual compressor.aux loss())

optimizer.zero grad()
aux_optimizer.zero grad()

loss.backward()
aux loss.backward()

torch.nn.utils.clip grad norm (model.parameters ()

optimizer.step ()
aux optimizer.step ()

dist loss.item() rate loss.item() loss.item()

validate (model, im models, betas, device, args):

torch.no grad() :
coding order eff = coding order|

rate loss
dist loss
total loss =

folder names

]

psnr dict = {k: range (args.levels) }
size dict = {k: range (args.levels) }
frame num dict = {k: k range (args.levels)
pixel num dict = {k: k range (args.levels)

}
}

test dataset = UVGTestDataset (
args.val path
folder names
gop_size=args.val gop size
skip frames=args.val skip frames
test size=args.val numbers

Page 48 of 53

= test dataset.orig img size

test loader = DatalLoader (test dataset, batch size=args.val gop size+
shuffle= num workers=args.workers)

decoded = {}

idx, gop enumerate (test loader) :
gop = gop.unsqueeze (1) .to(device)

range (args.levels) :

[

idx % args.val numbers ==
decoded[level] = {}

decO = im models[level] (gop[0])
decoded[level] [0] = decO]

dec last = im models[level] (gop[-11)
decoded[level] [coding order[1l]] = dec last]

order coding order eff:

output = model (
x before=decoded[level] [decoding info[order] [0]]
x_current=gop [order]
x after=decoded[level] [decoding info[order] [1]]
n=[level]
1=
train=

)

decoded[level] [order] = output]|

cur dist loss = betas[level] *
calculate distortion loss (output|] gop [order] dim= ())

cur rate loss = output|] .squeeze (0)

cur loss = torch.exp(torch.mean (torch.log(cur dist loss +
cur rate loss)))

total loss += cur loss

uint8 real = float to uint8(goplorder] [
uint8 dec out = float to uint8 (output[

cur_psnr = PSNR (
MSE (uint8 dec out.type (torch.float)
uint8 real.type (torch.float))
data range=

)

psnr _dict[level] += cur psnr

size dict[level] += output]] .squeeze (0)
frame num dict[level] +=

pixel num dict[level] += uint8 real.shape[l] *

uint8 real.shape[2]

decoded[level] = {0: dec last}

total frames = sum(frame num dict.values ()
total pixels sum (pixel num dict.values|()

Page 49 of 53

total size sum(size dict.values ())
total psnr sum (psnr_dict.values ())

average bpp dict = {k: (v / pixel num dict[k]) .item()
size dict.items ()}

average psnr dict = {k: (v / frame num dict[k]) .item()
psnr dict.items () }

average psnr = total psnr / total frames
average loss = total loss / total frames
average bpp = total size / total pixels

average loss.item() average psnr.item() average bpp.item/()
average psnr dict, average bpp dict

main (args) :

args.wandb wandb exist:

wandb.init (
project=args.project name
name=args.model name
config=vars (args)

image compressors = [mbt2018 mean (g
pretrained=) .to (device) .float ()
q args.num 1]

idx, image compressor enumerate (image compressors) :
param image compressor.parameters () :
param.requires grad =

image compressors[idx] = image compressor.eval ()

model = b model.BidirFlowRef (n=args.levels, N=args.N Db).to(device) .float ()
infographic = Infographic()

args.pretrained:
checkpoint = torch.load(args.pretrained, map location=device)
model = load model (model, checkpoint, exceptions=[])

model = model.eval ()

avg val loss, avg psnr, avg bpp, avg psnr dict, avg bpp dict = validate (
model=model
im models=image compressors
betas=args.betas mse
device=device
args=args

infographic.update val info(avg val loss, avg psnr, avg bpp)
infographic.update best val info()
logging.info (avg val loss}")
logging.info (avg psnr}")
logging.info (avg bppl}")
logging.info (

str (infographic.best val loss))

Page 50 of 53

logging.info(

str (infographic.psnr dec at best loss))
logging.info(

str (infographic.bpp at best loss))

infographic = Infographic ()

optimizer, aux optimizer, scheduler = configure optimizers (model

args.cont train:

optimizer, aux optimizer = load optimizer (
checkpoint=checkpoint
device=device
optimizer=optimizer
aux_optimizer=aux optimizer

)
scheduler.load state dict (checkpoint]| 1)

model parameters = filter (p: p.requires grad, model.parameters())
params = sum([np.prod(p.size()) P model parameters])

args.wandb wandb exist:

wandb.config.update ({ : params})

args.log results:
logging.info (+ str (params))

train dataset = VimeoTrainDataset (
args.train path
patch size=args.patch size
gop size=args.train gop size
skip frames=args.train skip frames
num frames=args.train num frames
rng=rng
dtype=
)

train sampler = RandomSampler (train dataset, replacement=

time start = time.perf counter ()

args.cont train:
iteration = checkpoint]|

iteration =

model = model.train ()

iteration <= args.total train step:
train loader = Dataloader (train dataset, batch size=args.batch size
sampler=train sampler, num workers=args.workers, drop last=)

gop im batch train loader:

dist loss, rate loss, loss = train one step(
im batch=gop im batch.to(args.device) .float ()
model=model
im models=image compressors
optimizer=optimizer
aux optimizer=aux optimizer

Page 51 of 53

betas=args.betas mse
device=device

infographic.update train info(dist loss, rate loss
iteration +=

5

iteration % args.train step ==

model = model.eval ()
avg val loss, avg psnr, avg bpp, avg psnr dict, avg bpp dict =

model=model

im models=image compressors
betas=args.betas mse
device=device

args=args

infographic.update val info(avg val loss, avg psnr

scheduler.step (avg val loss)
learning rate = optimizer.param groups[0] [

time end = time.perf counter ()
duration = time end - time start

avg val loss < infographic.best val loss:

save model (
model=model
optimizer=optimizer
aux_ optimizer=aux optimizer
scheduler=scheduler
num iter=iteration
exceptions=1[]
save name= args.b save dir

infographic.update best val info()

args.log results:
logging.info(

args.wandb wandb exist:
wandb dict = {
duration
learning rate
infographic.step train dist loss /
args.train step
infographic.step train rate loss /
args.train step
infographic.step train loss /
args.train step
infographic.avg psnr dec
infographic.avg bpp
infographic.avg val loss
infographic.best val loss

infographic.psnr dec at best loss

Page 52 of 53

infographic.bpp at best loss
}

k avg psnr dict.keys() :
wandb_dict[k] = avg _psnr dict[k]
wandb_dict[k] = avg bpp dict[k]

wandb.log (wandb dict, step=iteration)

args.log results:
logging.info(+ str(iteration))
logging.info (+ str (duration))
logging.info (+ str(learning rate))
logging.info(3
str (infographic.step train dist loss / args.train step))
logging.info (+
str(infographic.step train rate loss / args.train step))
logging.info (+
str (infographic.step train loss / args.train step))
logging.info(3
str (infographic.avg psnr dec))
logging.info(+ str(infographic.avg bpp))
logging.info (+
str (infographic.avg val loss))
logging.info(
str (infographic.best val loss))
logging.info (
str (infographic.psnr dec at best loss))
logging.info(
str (infographic.bpp at best loss))
logging.info (
logging.info (
k, v avg psnr dict.items ()
logging.info(+ str (k) +
logging.info()
k, v avg bpp dict.items() :
logging.info(+ str (k) +
logging.info (

infographic.zero train info ()
model = model.train ()
time start = time.perf counter ()

iteration >= args.total train step:

__name ==
main (args)

Page 53 of 53

