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Abstract

Recent advancements, particularly in novel view synthe-
sis, catalyzed the pursuit of 3D reconstruction using neu-
ral implicit representations. However, per-scene optimized
models do not emerge as feasible options in many real-
life applications and suggest the development of general-
izable 3D reconstruction models. In this paper, we present
MatchSDF, a novel 3D reconstruction model that uses pair-
wise cosine similarity for views provided and additional ge-
ometry encoding features such as groupwise variance to
improve geometric cues. In addition, MatchSDF benefits
from cross-point correlation by incorporating Ray Trans-
former into generic SDF networks. MatchSDF is capa-
ble of performing novel view synthesis by using the recent
idea of color blending to improve the appearance of views.
On the DTU benchmark, MatchSDF achieves comparable
and slightly better results against SparseNeuS while be-
ing reference-view agnostic and not limited by volumet-
ric features. Our code is publicly available at https:
//github.com/EliasSalameh/SparseNeuS--
MatchSDF

1. Introduction
3D reconstruction using multiple views is a fundamen-

tal and widely applicable task in computer vision with rel-
evance in robotics, graphics, mixed reality, as well as other
fields. Recently, neural implicit scene representations have
emerged as a powerful approach for handling 3D geome-
try and appearance. The mainstream approach in 3D re-
construction revolves around employing multi-layer percep-
trons (MLPs) to parameterize shape representations, such
as occupancy [12] or signed distance fields [10, 15, 18, 20].
Typical methods to train the neural models utilize differ-
entiable surface rendering [19] or volume rendering [12,
15, 18, 20]. These rendering techniques project the implicit
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Figure 1. 3D surface reconstruction using three views from DTU
benchmark [6] (top). SparseNeuS generates oversmooth and clut-
tered surfaces (right), while MatchSDF captures finer details (left).

shape representations onto 2D image planes from specified
views, allowing for differentiation and gradient-descent-
based optimization during training. One notable example
among these methods is MonoSDF [20], which further in-
corporates monocular geometric cues to enhance the quality
of multi-view 3D reconstruction.

Despite the satisfactory results achieved by the afore-
mentioned reconstruction methods capitalizing on the
progress in implicit 3D representations, most of these meth-
ods are proposed in the context of per-scene optimiza-
tion. This entails optimizing a dedicated model for each
scene, which limits efficient training on large-scale datasets.
Therefore, the primary objective of this project is to ex-
plore how to learn generalizable models for 3D reconstruc-
tion. While the exploration of generalizable 3D reconstruc-
tion remains limited in the existing literature, significant
attempts have been made to address this challenge. One
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such approach is SparseNeuS [10], which offers a gener-
alizable 3D reconstruction method requiring only a sparse
set of input images (as few as 2 or 3). SparseNeuS con-
structs a geometry encoding volume, utilizing features ex-
tracted from the 2D images. Subsequently, a multi-level
geometry reasoning scheme is employed to refine the ge-
ometry progressively. Additionally, SparseNeuS employs
a multi-scale color blending scheme to render appearance
from novel views, facilitating the use of images for super-
vision. However, SparseNeuS is essentially based on cost
volume construction, which relies on a predefined reference
view. Consequently, rendering quality tends to degrade sig-
nificantly when the target view lacks sufficient overlap with
the reference view. This limitation is a common drawback
of cost-volume-based methods, potentially compromising
the accuracy and robustness of the reconstruction process.

To address the inherent limitations of cost volume-based
approaches, MatchNeRF [3] proposed a novel strategy that
leverages 2D feature matching information between multi-
view images, yielding promising results in the domain of
novel view synthesis. In this study, we extend a similar
strategy for 3D reconstruction while utilizing the SDF rep-
resentation.

Our proposed framework, named MatchSDF, fuses the
frameworks of MatchNeRF and SparseNeuS [10] by pro-
viding the SparseNeuS decoder with a pairwise cosine sim-
ilarity computed by the MatchNeRF encoder as well as ad-
ditional geometry encoding features. Through this integra-
tion, we aim to establish MatchSDF as a novel framework
capable of achieving generalizable 3D reconstruction that
works well regardless of the selection of the reference view.
In addition, unlike recent volumetric feature-based mod-
els, MatchSDF does not suffer from being limited to small
scenes.

Furthermore, we explore the application of the Ray
Transformer [16] in the mesh generation phase in a simi-
lar way as VolRecon [14]. A series of experiments have
been conducted to evaluate the performance of our method
in surface reconstruction and to investigate the impacts of
the Ray Transformer, mesh generation method, architec-
tural changes, additional features, and loss function on the
overall results. These investigations offer valuable insights
into the effectiveness and potential enhancements of our
proposed MatchSDF framework.

Our major contributions can be summarized as follows:

• We introduce MatchSDF, a novel and generalizable
SDF-based 3D reconstruction pipeline that leverages
feature matching statistics as the geometry prior, re-
sulting in a view-agnostic approach.

• Unlike other state-of-the-art models, MatchSDF uses
explicit correspondence matching among views and
does not require volumetric features, which limits to

smaller scenes.

• We conduct thorough and extensive ablation studies
to investigate the effectiveness of various components
within our MatchSDF framework and provide a code-
base for highly customizable model training.

2. Related Work
2.1. Generalizable NeRF

Conventional NeRF methods often encounter issues of
overfitting to specific scenes, leading to inferior perfor-
mance when applied to unseen scenes. This problem is
targeted by several approaches [2, 7, 9] to demonstrate the
effectiveness of introducing a geometric prior to generaliza-
tion. For instance, MVSNeRF [2] employs a 3D cost vol-
ume followed by a 3D CNN for post-regularization. Nev-
ertheless, the efficacy of this cost volume-based geomet-
ric prior is contingent on selecting the reference view. To
improve upon such limitations, GeoNeRF [7] refines the
approach by fusing multiple cascaded cost volumes us-
ing attention modules. However, even with this improve-
ment, GeoNeRF may still be constrained by the inherent
limitations of the cost volume representation. In contrast,
MatchNeRF [3] introduces a correspondence matching-
based strategy to incorporate the geometry prior without re-
lying on a 3D cost volume or subsequent 3D CNN, thereby
possessing a valuable view-agnostic property. While these
methods achieve satisfactory generalizability, their primary
focus is often on novel view synthesis and may not explic-
itly represent 3D surfaces. On the other hand, our proposed
method, MatchSDF, extends the MatchNeRF framework to
achieve generalizable 3D reconstruction while retaining the
advantageous view-agnostic feature. This extension enables
our approach to provide an explicit representation of 3D sur-
faces, offering further potential benefits in addressing the
challenges faced by traditional NeRF methods.

2.2. SDF-based Neural Surface Reconstruction

Recently, neural implicit representations have emerged
as the prevailing approach for multi-view reconstruction
tasks. Among these methods, a common practice involves
decoding neural implicit encodings into either occupancy
fields or SDF to represent 3D geometry. SDF-based meth-
ods [10, 15, 18, 20] are often favored over occupancy-based
alternatives [12] due to their convenience in extracting clean
and high-fidelity surfaces as the zero-level set. While some
approaches use surface rendering [19] for multi-view recon-
struction from predicted SDFs, they typically require addi-
tional object masks [11, 19] or depth priors [21], which can
be impractical in real-world applications. Certain meth-
ods [12, 15, 18, 20] leverage volume rendering for recon-
struction to eliminate the need for extra masks and depth
priors. However, these methods heavily rely on a substantial



number of images and require time-consuming per-scene
optimization, making them unsuitable for generalizing to
new scenes. SparseNeuS [10], a subsequent work, facil-
itates generalization to new scenes for 3D reconstruction
by learning geometric priors across scenes from a sparse
set of input images. Despite its improved generalizability,
SparseNeuS still relies on cost volume representations, sim-
ilar to MVSNeRF [2] and GeoNeRF [7], which may lead
to deteriorated reconstruction results based on the selection
of reference views. In addition to the cost volume repre-
sentation, VolRecon [14] also utilizes projected multi-view
features. Although VolRecon uses signed ray distance func-
tions, it adopts TSDF fusion [4] to reconstruct 3D objects
via depth map fusion. In the design of our MatchSDF ar-
chitecture, we aim to enhance the reconstruction by intro-
ducing a view-agnostic feature by incorporating a pairwise-
matching strategy, as seen in MatchNeRF [3], for scene en-
coding.

3. Method
We extend MatchNeRF [3], which is developed solely

for Novel-View Synthesis, to perform 3D Surface Re-
construction. We utilize tools from MatchNeRF [3],
SparseNeuS [10], and VolRecon [14] and improve in certain
aspects to build the novel vanilla-MatchSDF and MatchSDF
models.

A high-level overview of our pipeline can be seen in Fig-
ure 2.

3.1. Feature Encoder

Our feature encoder is similar to the one employed in
MatchNeRF [3], with some modifications to the output of
the feature encoder. Using a weight-sharing CNN, Match-
NeRF’s encoder first extracts 8x downsampled features for
each view separately. Then, a Transformer with cross-
attention built on top of GMFlow [17] is used. Each pos-
sible 2-view pair of convolutional features is injected with
positional encodings and subsequently fed into a weight-
sharing Transformer jointly to model the cross-view inter-
action. The output features are upsampled with a network
to a resolution of 1/4th of the original resolution. That way,
the output features at this stage have a resolution of 1/4th
and 1/8th of the original images. Each 3D point on a ray is
then projected onto the pair-wise 2D Transformer features
Fi and Fj . To obtain the features fi and fj at each specific
3D point, the Transformer features {Fi, Fj} ∈ R256 are bi-
linearly sampled at the projected 2D locations. The model
then computes the group-wise cosine similarity for each res-
olution to increase the expressiveness compared to comput-
ing a single value for the whole feature representation. The
final cosine similarity in MatchNeRF [3] is obtained using
an element-wise average over all pairs. The cosine similar-
ity obtained in this way is shown to have a high correlation

with the SDF value of each point [3].
In contrast to SparseNeuS [10], our feature encoding

module does not require the construction of cost volume
and thus avoids expensive 3D convolutional architecture.

Further improvements on our feature encoder module are
discussed in the following sections.

3.1.1 Additional Features

We explore the possibility of not just using the pair-wise
cosine similarity and other features to give the SDF network
more information to process. For this reason, we use the
raw sampled Transformer features from the MatchNeRF [3]
encoder as additional latent features for the SDF network.
As these features are very high-dimensional (256 channels),
the features are compressed with a 2-layer MLP with ReLU
activation. In Figure 2, these features are represented as q.

3.1.2 Modified Pairwise Cosine Similarity

The pair-wise cosine similarity of the Transformer features
fi and fj between 2 points of views i and j in MatchN-
eRF [3] is computed without verifying if one or both points
are not visible from one of the two views. The features
fi and fj at each 3D point are sampled using the bor-
der constraint, which means that the feature of the closest
point at the border of the viewing frustum is used instead.
This can lead to features having a high cosine similarity,
although one or both could potentially not be visible. Af-
ter the computations between each viewing pair are com-
pleted, the original method takes an unweighted average. In
this setting, a point unobserved by even a single view will
lead to unpredictable results in 2 out of 3 viewing pairs. To
avoid this from happening, we propose to replace the non-
weighted average with a weighted one with an extra filtering
step:

ẑs =
1

P̂val

P∑
p=1

mp,val · zp,s (1)

where ẑs is the weighted cosine similarity of the features
at point s, zp,s is the cosine similarity of the viewing pair
p at point s, P is the number of viewing pairs and P̂val =
max(Pval, 1) is the number of viewing pairs this point is ob-
served, but lower-bounded by 1 to avoid unboundedness of
the expression from above. mp,val,s ∈ {0, 1} is a mask that
describes if the current point s is observed by both views of
viewing pair p. .

3.1.3 Grouped Variance

Similarly to the cosine similarity, we compute the grouped
variance in a pairwise manner. We divide the feature of each
projected point on each view into n groups, expressed as
Fp,k = {F 1

p,k, ..., F
n
p,k} where p is the point of interest and



Figure 2. Overview of MatchSDF architecture. N = 3 views are fed into our derivative of the MatchNeRF [3] encoder. Later on, the
extracted features are used in the SDF network with a 4-layer MLP and a Ray Transformer in order to generate final SDF values per point.
A compound loss function is used after applying volume rendering on the final SDF values and estimated appearance per point.

k is the view onto which the point is projected. Next, the
variance between the group pair is computed as Fp,(i,j) =
{V ar(F 1

p,i, F
1
p,j), ..., V ar(Fn

p,i, F
n
p,j)}, where i and j are 2

distinct views. Afterward, we compute the average of each
group to get a new feature vector of size n for each view-
pair: F ′

p,(i,j) = {Mean(F 1
p,(i,j)), ...,Mean(Fn

p,(i,j))}. Fi-
nally, we compute the average of each n-component of all
view-pairs that are overseen by the point:

Fp =

{∑
i,j Mean(F 1

p,(i,j))

N(N − 1)/2
, ...,

∑
i,j Mean(Fn

p,(i,j))

N(N − 1)/2

}

Fp =

∑
i,j F

′
p,(i,j)

N(N − 1)/2

The grouped variance is computed using 8x downsampled
as well as 4x downsampled features. We then concatenate
the resulting grouped variance feature yielded from each
feature map. The final feature is then added to the condi-
tional features used by the SDF network.

3.2. Surface Extraction

To represent the surface, we use a 4-layer MLP network
fθ similar to [10, 15] to predict the SDF value of a sam-
pled 3D point s. The network is fed at its input the posi-
tional encoding (PE) of the 3D coordinates of s as well as
conditional features Cond(s) described in Section 3.1. The
network is then expressed as:

sdf1(s) = fθ(PE(s), Cond1(s))

To get better surfaces, we go beyond the MLP block by
incorporating a Ray Transformer at its output, resulting in

an improved SDF prediction. However, following [1], the
initialization of the volume rendering network appears as
an important regularizer for surface extraction. Although
the efficacy of the Ray Transformer is vividly demonstrated
in [3, 14], it breaks the initialization mechanism. For that
reason, we propose the use of an optional second SDF
network with proper geometric initialization as described
in [1, 10, 16] to use the Ray Transformer output as addi-
tional features instead of the final SDF values. The output
of the Ray Transformer is then concatenated with other fea-
tures outputted from the first 4-layer MLP block s1 to form
the second set of conditional features Cond2(s). The final
predicted SDF value by our network is,

sdf2(s) = fθ(PE(s), Cond2(s))

. The full SDF architecture used is visualized in Figure 3.

3.2.1 Color Blending

To get improved color samples, we additionally employ the
color blending scheme introduced in SparseNeuS [10] to
make up for the fact that we oversee few images. The color
blending scheme consists of predicting the color of a point
s by aggregating appearance information from the input im-
ages. Initially, point s undergoes projection onto the input
images, yielding its respective colors {Ii(s)}N−1

i=0 . Sub-
sequently, these colors originating from various perspec-
tives are blended together using blending weights. This
fusion culminates in the predicted color of q. The blend-
ing weight {ws

i }
N−1
i=0 is computed by considering the pho-

tographic consistency of the input images. Full details on
how to obtain the blending weights can be followed in [10].



Figure 3. Overall SDF network architecture utilizing the Ray
Transformer. Two 4-layer MLPs are used on both sides of the
Ray Transformer to allow a spherical initial surface.

After having obtained the blending weights, the color of
a 3D point s is predicted as the weighted sum of its pro-
jected colors {Ii(s)}N−1

i=0 on the input images. To render
the final color of the query ray, the color and SDF values of
3D points sampled on the ray are fir predicted. The color-
and SDF values of the sampled points are then aggregated
to obtain the final colors of the ray using SDF-based volume
rendering, as done in [15].

3.3. Ray Transformer

MatchNeRF [3] uses a small MLP followed by Ray
Transformer, a multi-head attention module, to compute the
opacity. Similarly, VolRecon [14] uses a Ray Transformer
for the purpose of depth estimation.

Inspired by both models, we utilize a Ray Transformer
to estimate, refine and improve per-point SDF features by
utilizing cross-point attention. After the first SDF network
described in Section 3.2 extracts per-point SDF features,
the Ray Transformer refines the features using the cross-
attention mechanism among the points along the same ray.
Later on, an optional second SDF network generates the fi-
nal SDF values by using conditioning information from the
Ray Transformer as depicted in Figure 3.

3.3.1 Modified Volume Sampling Process

The mesh generation process from SparseNeuS [10] cre-
ates a dense 3D cube centered around the origin with side
lengths of 2 units. This cube consists of 3D voxels which
contain the SDF values for this partition of the 3D space.
The SDF values are then computed in batches where each
consists of points from disjunct subcubes, meaning that rays
in 3D space could be split into shorter rays. Their SDF net-
work does not consider any point-wise correlations along a
ray and thus does not suffer from poor directionality of rays
or incomplete rays.

Figure 4. Two types of sampling methods used for mesh genera-
tion. Grid-like, cubes sampling method (left) and rays sampling
method (right). Gray points depict the sampled points in each
batch, while blue point represents the reference camera origin.

However, the SDF values of each point from our Ray Trans-
former depend on the features and positions of all other
points on the same ray. Additionally, we postulate that rays
cast in directions perpendicular to the viewing direction of
any of the reference views might extract less rich informa-
tion compared to the rays cast quasi-parallel to one of the
viewing directions of one of the reference views. This im-
plies that we need to modify the implementation of the mesh
generation to necessitate the problems that could arise for
the utilization of the Ray Transformer.
To account for the directionality of the Ray Transformer, we
modify the mentioned mesh generation of SparseNeuS [10],
which we will refer to as cubes method, to cast rays parallel
to one of the three base vectors of the 3D space; for sim-
plicity, we use the x-direction. We then compute the angle
between the ray and the target view and rotate each ray to
be parallel to the viewing direction of the target view.
We change the batching process of the SparseNeuS [10]
mesh generation to partition the 3D space into disjunct rect-
angles, which span the whole cube in at least one gener-
ation to ensure that we do not partition rays into multiple
disjunct rays as it is done in SparseNeuS. We will refer to
this method as rays method. The difference between the
two methods can be observed in Figure 4.

3.3.2 TSDF Fusion for further Enhancement of View-
Dependent Rays

It is important for neural implicit surface reconstruction
methods to initialize the SDF network in a geometrically
plausible way [1, 10, 16]. Failing to do so can lead to de-
graded gradients and lessen constraints on surface genera-
tion, worsening the generated surface. Due to difficulties in
initializing the Ray Transformer in a geometrically plausi-
ble way, we additionally explore the method of rendering
depth maps from multiple virtual views and then fusing the
depth map into a consistent mesh. Truncated SDF (TSDF)



fusion [4] is adapted from VolRecon [14] and integrated into
our codebase. TSDF fusion method requires the generation
of depth maps instead of using direct SDF values of 3D-
point samples. The depth maps are fused together to esti-
mate the final surface.

Since the TSDF fusion method does not use simple 3D-
point samples but requires casting rays from the camera ori-
gin, the validation takes longer than sampling-based surface
generation. On the other hand, training is computationally
more efficient as the additional surface normal required for
Eikonal loss is saved. This also implies that we can no
longer use the Eikonal loss and have to resort to using the
depth loss with a higher weight.

3.4. Loss Functions

Our overall loss function is adapted from
SparseNeuS [10] and VolRecon [14] and NeuS [15].
Our loss function is defined as a combination of four
components,

L = Lrgb + αLeik + βLsparse + γLfgbg + ϵLdepth (2)

The primary component is the color loss, Lrgb, defined
as

Lrgb =
1

N

N∑
i=1

∥∥∥Ci − Ĉi

∥∥∥
1

(3)

where Ĉi is the ground-truth color per pixel i. Secondly,
the Eikonal loss Leik [5] is optionally applied as the surface
regularizer to extract a smooth surface. The Eikonal loss is
calculated as,

Leik =
1

∥S∥
∑
s∈S

(∥∇fθ(s)∥2 − 1)2 (4)

where s is a sampled 3D point from the set of all sampled
points S along the rays. To induce sparseness in the hind-
sight of the reconstructed geometry, a sparseness-inducing
loss component Lsparse from SparseNeuS [10] is used,

Lsparse =
1

∥S∥
∑
s∈S

exp (−τ · |sdf(s)|) , (5)

where |sdf(s)| is the absolute SDF value of the point s and
τ is a temperature scalar for the SDF value.

On the other hand, the foreground-background loss
Lfgbg [15] penalizes the model for giving high weights to
rays that are part of the background. This prior is optionally
used in the first 50,000 iterations to make the foreground
cleaner. The equation for the Lfgbg is formulated as fol-
lows:

Lfgbg =
1

K

K∑
k=1

(1−Mk) ·
∥∥∥Ŵk −Mk

∥∥∥
1

(6)

where Mk ∈ {0, 1} is the mask value of pixel k out of the
set of pixels with cardinality K, Ŵk =

∑n
i=1 Tk,iαk,i is the

sum of weights along the camera ray [15].
Finally, the depth loss Ldepth appears as an important

guideline for the geometry learning process. The depth loss
is calculated as,

Ldepth =
1

∥S∥
∑
s∈S

∥∥∥Ds − D̂s

∥∥∥
1

(7)

where s is a sampled point with valid depth, Ds is the pre-
dicted depth and D̂s is the ground-truth depth of the corre-
sponding point s. While the network can learn the novel-
view synthesis generation process without the depth loss,
the reconstructed 3D object falls far behind when depth
loss is not introduced. As a result, our loss function for
vanilla-MatchSDF uses loss component weights α = 0.2,
β = 0.02, γ = 0.01, ϵ = 0.3.

However, a significant observation of our work is the
trivial but vital challenge of adapting single loss function
for all architectures. Although [10,15,20] suggest using the
Eikonal loss is helpful for geometry regularization, compu-
tation of second-order derivatives is computationally expen-
sive due to the use of Ray Transformer in MatchSDF archi-
tecture. Therefore, we use a non-zero α coefficient only for
vanilla-MatchSDF without Ray Transformer. Specifically,
our loss function for MatchSDF uses the loss component
weights α = 0, β = 0.02, γ = 0.01, ϵ = 1.

4. Experiments
4.1. Experimental Setup

4.1.1 Dataset

Following recent works in 3D reconstruction [10, 19, 20]
and Novel-View Synthesis [2, 3, 7], we train our model on
the DTU dataset [6].It is a large-scale Multi-View Stere-
opsis dataset comprising 124 diverse scenes recorded in 7
different lighting conditions. We use the same 15 scans
as SparseNeus [10] and VolRecon [14] to evaluate our
model and use the remaining scans for training. Each
scan has a ground-truth mesh, RGB images, depth maps,
and foreground-background masks for each captured pose.
Each scan contains one specific object or a combination of
objects, as depicted in Figure 5.

For testing our model on the task of 3D reconstruction,
we follow the same evaluation method as SparseNeuS [10]
and VolRecon [14]. We evaluate our model on two different
sets of the same 15 scans from the DTU benchmark [6].
Later on, we report the average of results from two sets.

4.1.2 Implementation Details

We build our model as a merged and adapted version of
the code of SparseNeuS [10] and MatchNeRF [3] in Py-



(a) Multiple objects (b) Single object

Figure 5. Example RGB images extracted from the DTU
dataset [6]

Torch [13]. We are constrained by the VRAM of the used
GPUs, which is why we train our model using an image
resolution of 640 x 512 with 3 reference images. The
training is performed on single external Tesla V100 GPU.
We train our model for 200,000 iterations using Adam [8]
with different learning rates for our encoder and decoder.
Specifically, learning rates of 2e − 4 and 5e − 5 are used
for the decoder and the encoder, respectively. In addi-
tion, the learning rate is halved at [100K, 150K, 200K]
iteration milestones following SparseNeuS [10]. We per-
form experiments with a pre-trained MatchNeRF [3] en-
coder and from scratch. If not specified otherwise, the pre-
trained version is used for the experiments. We vary the loss
weights described in Section 3.4 when switching between
our baseline model and the model with ray-transformer by
setting the Eikonal loss weight to 0. We sample 512 rays
per batch which we set to a size of N = 1. Following
SparseNeuS [10], we use hierarchical sampling to resample
points on each ray that are closer to the surface. For that, we
sample N = 64 points on each ray uniformly and then use
importance sampling to resample another N = 64 points,
which we split up into 4 steps of N = 16. During testing,
we set the image resolution to 800 x 576 to preserve the as-
pect ratio of images with a resolution of 1600 x 1152. We
compare the TSDF fusion process and the mesh generation
processes described in Section 3.3.1 with each other.

4.1.3 Baseline

We compare our model mainly against SparseNeuS [10]
and include the scores from MVSNeRF [2], IBRNet [16]
and VolRecon [14], which we borrow from [14]. All listed
models, including ours, were trained on- and evaluated on 3
views for 3D reconstruction.

4.1.4 Architectural Choices

We evaluate the performance of our model without Ray
Transformer, which will subsequently be called vanilla-
MatchSDF, versus our model, MatchSDF, which includes
the Ray Transformer by default. MatchSDF’s Ray Trans-

former introduces cross-point interactions by fusing the ren-
dered information along a ray via a Transformer, unlike
vanilla-MatchSDF’s decoder, which processes all points on
a ray independently. Furthermore, we conduct experiments
on the integration of the Ray Transformer. These experi-
ments include a model where the Ray Transformer is sand-
wiched between 2 small MLPs to leverage the geometric
initialization of the MLPs [10, 16], as well as one model
where the cosine similarity is fed as a residual connection
to the second to last layer of the SDF network to leverage
the strong correlation between the SDF and the cosine sim-
ilarity found in MatchNeRF [3].

4.2. Evaluation Results

4.2.1 Ablation on Mesh Generation Method

We evaluate the 3D reconstruction capability of vanilla-
MatchSDF and MatchSDF with the described mesh gen-
eration modes from Section 3.3.1. Because of the impor-
tance of the directionality of MatchSDF, we only evalu-
ate the rays method and TSDF fusion for it. Table 1
shows a summary of the results of this experiment. Vanilla-
MatchSDF with the rays method performs better than the
cubes method, although vanilla-MatchSDF considers no
spatial relationship between any other points. We con-
jure that this slight improvement is due to different sam-
pling locations arising from the rotation of points around
the origin. MatchSDF performs best with the TSDF fusion
method. In contrast, vanilla-MatchSDF performs worse us-
ing TSDF Fusion, which can be explained by the fact that
vanilla-MatchSDF relies more on the Eikonal loss, whereas
MatchSDF puts a higher weight on the depth loss, mak-
ing the depth predictions more accurate. Overall, the table
shows that MatchSDF shows more promising results than
vanilla-MatchSDF, which is why we decide to continue the
evaluation using MatchSDF as our standard model.

Scan Mean↓ 40 55 69 110 114

vanilla- TSDF 3.62 4.53 2.77 3.95 4.24 3.08
cubes 2.81 2.83 1.39 2.23 2.50 1.61
rays 2.79 2.77 1.36 2.25 2.48 1.60

MatchSDF TSDF 2.01 2.26 1.59 2.01 2.26 1.38
rays 4.05 4.42 3.75 3.52 3.31 3.11

Table 1. Ablation Study on the choice of architecture combined
with their respective mesh generation processes. We use vanilla-
MatchSDF and MatchSDF for this analysis. We show the repre-
sentative Chamfer distances of 3-view reconstruction on 15 testing
scenes of DTU benchmark [6]. Bold font means best score and
underlining means second best score. MatchSDF using the TSDF
fusion method shows a clear improvement over the best vanilla-
MatchSDF model using the cubes method.



4.2.2 Ablation on Architectural Choices

For the training of MatchSDF, we provide a wide variety
of feature choices, mesh generation methods, and SDF net-
work architectures. The experimental comparison of each
choice can be viewed in Table 2.

We take the values for SparseNeuS [10], VolRecon [14],
IBRNet [16], and MVSNeRF [2] for 3-view 3D reconstruc-
tion as reported by VolRecon [14]. For our model, we gen-
erate 3 depth maps for each scene. These depth maps are
rendered from the 3 source views.

We can clearly see that the model with grouped variance
outperforms the standard MatchSDF network by providing
a strong geometric prior to the model, letting it express the
consistency of points by computing the variance of pro-
jected features along different views. It also outperforms
SparseNeuS by a small margin in overall mean Chamfer
distance on the test split of DTU [6], although SparseNeuS
does outperform MatchSDF with grouped variance in vari-
ous scans.

When we stack a second MLP on top of the existing SDF
network with Ray Transformer, we observe a performance
deterioration. This is probably because a proper geometric
initialization is more important when using the Eikonal loss
as a regularizer. Thus, since we do not use the Eikonal loss
for these models, the benefit from this initialization is lost.
Possibly, the second MLP learns to put a lower weight on
the output from the Ray Transformer since it is interpreted
as an intermediate feature instead of the final output, which
downplays the effectiveness of the Ray Transformer.

Observing Figure 6, it is evident that MatchSDF ac-
quires more accurate yet noisy surfaces compared to
SparseNeuS [10] (see Scan 37, 65, and 118). The noise
on the surfaces generated by MatchSDF is similar to the re-
sults achieved by VolRecon [14] as a common result of us-
ing TSDF Fusion. Furthermore, the features generated by
MatchSDF are not fully-convolutional features in contrast
to SparseNeuS. Thus, the features are more prone to change
among neighbors and cause sharper yet noisier results. On
the other hand, due to the use of the TSDF Fusion method
instead of a sampling-based mesh generation, certain parts
behind the visible surfaces are missing for MatchSDF sim-
ilar to [14].

When we compare MVSNeRF [2] and SparseNeuS [10]
with MatchSDF based on their generalization capabilities
in Figure 7, we observe that MatchSDF manages to acquire
more complete meshes with an object in the foreground
similar to SparseNeuS (see row 1), but suffers from noisy
surfaces that are resulting from the use of correspondence
matching instead of volumetric features. On the other hand,
SparseNeuS does not depend on pixel-wise correspondence
and thus generates an oversmooth mesh.

4.2.3 Influence of Pre-Trained Encoder

We investigate the effect that the pre-trained MatchN-
eRF [3] encoder has on the final 3D reconstruction qual-
ity compared to the model being trained from scratch. It
clearly shows the superiority of the pre-trained model over
the model trained from scratch. This is expected as the pre-
trained encoder was trained for optical flow, so correspon-
dence matching in video frames, which supposedly helps
it to better learn correspondences also between images of
the same scene taken from different views, as was already
shown in MatchNeRF [3]. Although the model trained from
scratch is outperformed by the pre-trained model, it still
achieves acceptable performance. Table 3 contains the de-
tailed results from this analysis.

5. Limitations & Future Work

The most intuitive approach for training MatchSDF is
to train the model using the same training procedure as
SparseNeuS [10], i.e., with the same loss function and
learning rate schedule. However, our experiments showed
that the gradient calculation for the Eikonal loss is non-
trivial when combined with our Ray Transformer. As the
calculation of per 3D point gradient relies on the SDF tensor
of all points, the gradient calculation cannot be done with
the autograd functionality of PyTorch [13]. For that reason,
the Eikonal loss has an adverse effect on the MatchSDF
network when enabled, as depicted in Figure 8. Suppose
the calculation is done manually by preventing the effect of
inter-point SDF calculation relation. In that case, the com-
putational complexity of training becomes too high due to
the lack of optimization benefits from autograd.

Thus, for our future work, we aim to improve the Eikonal
loss calculation for MatchSDF and achieve better surface
regularization, possibly improving surface normals as well.

MatchSDF is capable of generating surfaces using both
the 3D-point sampling-based method (as discussed in Sec-
tion 3.3.1) and the TSDF Fusion method [4] (as discussed
in Section 3.3.2). TSDF Fusion improves the surface accu-
racy for MatchSDF even though it might not be favorable
to use TSDF Fusion since missing surfaces are imminent,
especially for MatchSDF due to its reliance on correspon-
dence matching and problems with occluded regions. Fur-
thermore, although TSDF Fusion improves the surface ac-
curacy, it is important to note that TSDF Fusion requires the
generation of depth maps for a specified number of views.
Thus, it takes considerably longer to generate surfaces using
TSDF Fusion than 3D-point sampling-based methods.

Although MatchSDF acquires competitive results when
compared with SparseNeus [10], and VolRecon [14], us-
ing a pre-trained feature encoding module appears as an
important component, as depicted in Table 2. Although
MatchSDF uses an encoder that is derived from Match-
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Figure 6. 3D Reconstruction results on testing scenes of DTU benchmark [6] using N = 3 views. Our results demonstrate that SparseNeuS
leads to oversmoothened (i.e., scan 24) or cluttered/missing surfaces (i.e., scan 37 and scan 65), while MatchSDF yields surfaces with more
granular details.

Scan Mean↓ 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122
IBRNet [16] 2.32 2.29 3.70 2.66 1.83 3.02 2.83 1.77 2.28 2.73 1.96 1.87 2.13 1.58 2.05 2.09
MVSNeRF [2] 2.09 1.96 3.27 2.54 1.93 2.57 2.71 1.82 1.72 2.29 1.75 1.72 1.47 1.29 2.09 2.26
MatchSDF (Ours) 2.01 2.56 3.10 2.26 1.59 2.23 2.16 2.01 1.87 2.13 1.52 1.69 2.26 1.38 1.63 1.70
+ grouped variance 1.93 2.34 2.96 2.45 1.49 2.28 2.15 1.82 1.88 2.13 1.35 1.55 2.15 1.27 1.53 1.62
+ sandwiched between SDFs 2.11 2.78 3.42 2.79 1.54 2.30 1.93 2.12 1.90 2.18 1.48 1.76 2.49 1.41 1.75 1.81
SparseNeuS [10] 1.96 2.17 3.29 2.74 1.67 2.69 2.42 1.58 1.86 1.94 1.35 1.50 1.45 0.98 1.86 1.87
VolRecon [14] 1.38 1.20 2.59 1.56 1.08 1.43 1.92 1.11 1.48 1.42 1.05 1.19 1.38 0.74 1.23 1.27

Table 2. Chamfer distance results of 3D reconstruction on DTU benchmark [6] using 3 views (lower is better). We borrow the reported
results for IBRNet [16], MVSNeRF [2], SparseNeuS [10] and VolRecon [14] from [14]. Bold font means best score and underlining means
second best score. We report the incremental benefit of using grouped variance and an optional second SDF network to allow geometric
initialization leading to a spherical initial surface.

Scan Mean↓ 40 55 69 110 114

Pre-trained 1.93 2.45 1.49 1.82 2.15 1.27
From Scratch 2.48 3.33 2.04 2.21 2.35 1.86

Table 3. Ablation Study on the effect of using a pre-trained Match-
NeRF [3] encoder vs. training the model from scratch. Shown are
representative Chamfer distances of 3-view reconstruction on 15
testing scenes of DTU benchmark [6].

NeRF [3], the 3D reconstruction task requires additional
improvement in terms of depth estimation, which is not

fully aligned with the novel view synthesis task targeted
by MatchNeRF [3]. Therefore, pre-training the feature
encoder provides a stronger improvement when compared
with MatchNeRF [3].

Furthermore, MatchSDF only relies on matching pro-
jected points on 2D feature maps. On the other hand, works
such as SparseNeuS [10] and VolRecon [14] also use global
feature volumes that provide global shape priors that are
helpful for geometry estimation.

6. Conclusion

We introduced MatchSDF as a novel generalizable 3D
reconstruction architecture. MatchSDF encoder extracts
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Figure 7. 3D Reconstruction results on testing scenes of BlendedMVS benchmark [6] using N = 3 views. All models are only trained on
DTU and tested on BlendedMVS. We borrow the rendered images of the 3D meshes of MVSNeRF [2] and SparseNeuS [10] from [10].

(a) Intermediate normal map us-
ing autograd

(b) Intermediate normal map us-
ing manual gradient calculation

Figure 8. Difference between the result of using autograd and
manual gradient calculation by preventing inter-point SDF rela-
tion born due to Ray Transformer. Green, red and yellow colors
correspond to leftward, upward and rightward normal vectors, re-
spectively.

pairwise cosine similarity for views provided as well as
additional geometry encoding features such as group-wise
variance. Using the extracted features per 3D points, the
MatchSDF decoder incorporates a Ray Transformer in or-
der to benefit from inter-point relation between points along
the same ray. In addition, MatchSDF also incorporates a
color blending scheme to achieve more accurate novel view
synthesis in order to improve training signals.

Our method outperforms SparseNeuS [10] by a small
margin on the DTU benchmark [6] and does not suffer from
limitations related to the requirement of a predefined refer-
ence view and construction of a cost volume with a limited
size.
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